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Abstract

The main objective of this dissertation is to focus on a numerical study of inclined

magnetic field and higher order chemical reaction on the stagnation point nanofluid

flow past a porous surface with convective boundary condition. Impact of Joule

heating has also been incorporated. A mathematical model which resembles the

physical flow problem has been developed. Similarity transformations are used

to convert the partial differential equations (PDEs) into a system of nonlinear

ordinary differential equations (ODEs). Shooting method has been used to ob-

tain the numerical results with the help of the computational software MATLAB.

Effects of various physical parameters on the dimensionless velocity, temprature,

and concntration profiles are analyzed in the form of graphs. Numerical values of

skin friction coefficient, Nusselt number (heat transfer rate) and Sherwood number

(mass transfer rate) are also computed and discussed in detail.
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Chapter 1

Introduction

In this chapter few important aspect of mass transfer, fluid flow and heat conduc-

tion are explained.

1.1 Nanofluid

The applications of nanotechnology have attractedothe attentionoof scientistsoand

mathematicians towards theonanoscale materialoas these materials retain remark-

able chemical, optical and electrical aspects. Current studies made it possible to

diffuse nanoparticles in the conventional heat transport liquids comprising machine

oil, ethylene glycol and water to generate another class of heat transport liquids

with improved efficiency. Nanofluids can be termed as a colloidal fusion contains

of a base liquid and nanoparticles of magnitude 1–100 nm. Enhanced application

of nanoparticles boosts the thermo-physical aspects of the base liquid, i.e, the heat

transport raises with an increment in the heat conduction of liquid. Choi [1] was

the first who presented the theory of term nanofluid. Later, Buongiorno [2] estab-

lished widespread study of nanofluids and developed the preservation equations of

a non-homogeneous constancy model of a nanofluid. Hashmi et al. [3] investigated

magneto Oldroyd-B nanofluid considering the mixed convection effect in double

unrestrained isothermal stretching disks. These consequences have shown that

1
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on temperatureoand concentration fields,othe influence ofobuoyancy and Brown-

ianoparameter are significant. The multiple slip influence on magnetite Al2O3-Cu

and Al2O3-Cu nanofluids with chemical reaction was studied by Tlili et al. [4]. In

this area various studies are reported in Refs. [5–7].

1.2 Stagnation Point

In modern world the concept of stagnation point flows has potential applications

in numerous regions of aerospace equipment and mechanical industries. In the

flow a point with zero local velocity is represented by stagnation point flow. Ini-

tially, the theory of stagnation point in 2D viscous fluid model was presented by

Hiemenz [8]. He reported that the velocity field at various situations is same by

attaining exact solution. Homann [9] increased this idea for axisymmetric motion.

The stagnation point flows have a variety of industrial uses and numerous mechan-

ical devotions, mostly in metallurgy and polymer diligence. For example, the slow

chilling of an uninterrupted stretching metal or malleable tiles can be revealed

which have numerous uses in material fabrication by Lok et al. [10]. Markin and

Pop [11] reported the concept of stagnation point focused on Arrhenius kinetics to

stretched surface. Hiemenz stagnation-point flow for unvaryingly rotational plate

was analyzed by Weidman [12]. It was noted that when angular velocity intensifies

the centrifugal influence becomes enhancing predominant. Presently, Mahapatra

and Sidui [13] examined Homann stagnation-point flow for non-axisymmetric vis-

coelastic liquid numerically.

1.3 Thermal Radiation

Recently, the thermal radiation has essential influence on heat transport proper-

ties in the region of dynamics and manufacturing, interstellar technology, devel-

opments at high temperature. Thermal radiation characterize the thermal heat

arise form the surface and diffusing in all direction. Moreover, it has important
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involvement in enhancement of heat transport features in polymer dispensation

industry. Nanofluid is proposed quite worthwhile in this trend and numerous

performances for improvement of radiation have been wanted [14–16]. Waqas et

al. [17] considered theoinfluence oforadiation and MHDofor revised nanofluid re-

lation numerically.

1.4 Magnetohydrodynamics

In modern industry the theory of MHD has various real-world applications dueoto

the influence of magneticofields on theoflow controller andoon theoenactment of

several structures exhaustingoelectrically conducting liquids for instance, liquid

metals and water assortment with small acid and others. Furthermore, in the

gesture of the earth’ score, optimization of solidification procedures of alloys and

metals, waste atomic dispensation, diffusion mechanism of compound waste and

chemicals, solar astronomy, geo-physics and polymer engineering are variety of

MHD. Chamkha and Al-Mudhaf [18] considered the aspects of MHD in mixed

convection flow in an ambient fluid with angular velocity subject to heat sink/-

source. Chatterjee et al. [19] reported numerically, the impact of mixed convective

in vertical lid-driven four-sided enclosure packed with an electrically-conducting

liquid. Recently, in this area numerous researchers are engaged to study the as-

pects of MHD in different geometries [20–22].

1.5 Viscous Dissipation

The transport of heat subject to viscous dissipation is significant precisely for

the extremely viscous flows regardless of reasonable velocities. It transforms the

energy (kinetic to internal) i.e., warming of liquid caused by viscosity and therefore

increases the fluid movement. Numerous devices are assembled in stream-beds to

falloff flowing water kinetic energy to reduce their erosive potential at stream and

banks extremities. The non-dimensional influence (Eckert number) is designated
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as liquid motion modifiable variable. Limited studies related to viscous dissipation

are reported in Refs. [23–25].

1.6 Chemical Reaction

Without any uncertainty the influence of chemical reaction has a critical part

of heat and mass transport in diverse branches of industries and science. Ap-

plications of this form of flow can be established in diverse manufacturing and

built-up uses for instance ignition structures, metallurgy, fissionable devices, solar

antenna and chemical trade. Numerous beneficial diffusive progressions comprise

the species molecular dispersion with chemical reaction inside or on the boundary.

The properties of chemical reaction concerning a horizontal plate were considered

by Anjalidevi and Kandasamy [26]. Thermo-solutal Marangoni convection with

magnetic impact and chemical reaction were established by Zhang and Zheng [27].

Bhattacharyya and Layek [28] scrutinized the performance of chemical reaction

with slip impact considering suction/blowing cases caused by vertical stretched

surface. A number of investigators described their studies in this trend [29–31].

1.7 Porous Media

The porous media has many applications in biochemical catalytic vessels, energy

diligences, transport development in human lungs and kidneys, thermal isolation,

strategy of dense medium heat exchangers and geothermal processes, etc. Further,

building material, mineral, leakage of water in stream beds and timber are few

specimens of naturally obtainable porous medium. Usually the established Darcy’s

law has been engaged even for the flow of non-Newtonian liquids. This concern

is not truthful since conflict for non-Newtonian liquids are dissimilar than viscous

liquids. Therefore, reformed Darcy’s law execution is deliberated more realistic.

The study of [32–35] were absorbed on Darcy law to include the porous medium

in diverse geometries.
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1.8 Inclined Magnetic Field

Magnetic sensingotechniques exploit a wide range of ideasoand phenomena fromothe

fields ofophysics and materials science. These include search coils, fluxgate, optical

pumping, nuclear prefix, squid, hole effect, asymmetric magnetic resistance, giant

magnetic resistance, magnetic tunnel junctions, giant magnetic components, mag-

netic / piezoelectric installations, dual magnets, transistors, optical fibers, elec-

tromagnetic, exact electromagnetic systems and existing magnetic sensors [36].

Gilbert studied [37] the difference of the angle of inclination (or magnetic slope)

over a broken foundation stone in the form of a sphere, perhaps one of the

greatest experiments of models made in Earth sciences. The angleothat a mag-

neticoneedle makes with the horizontaloplane at anyospecific location. The mag-

neticoinclination is 00 at theomagnetic equator and 900 at each of theomagnetic

poles. Sugunamma and Sandeep observed the alignment magnetic field and chemi-

caloreaction effects on theoflow overoa vertical seesaw plateopast over a permeable

surface [38]. The magnetic effect over a free thermal conductivity of electricity and

mass transfer from a inclined plate with heatogeneration /oabsorption were stud-

ied by Chamkhaoet al. [39]. Yih [40]odiscussed the effectsoof suction / blowing on

mixed convection around sloping surfaces in porous media that digitally show that

with an increase in suction and decrease with blowing increases the Sherwood and

Nusselt number.

1.9 Joule Heating

The passage of an electric current produces heat that phenomena is known as Joule

heating. Joule heatingois also acknowledged as Ohmicoheating. Jouleoheating has

a collection of standard in built-up and scientific progressions for instance, electric

fires, electric heaters, radiant light bulb, electrical fuses, electronic fag, ther-mistor

and some others. For the concept of Joule heating some studied are presented here

[41–44].
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1.10 nth Order Chemical Reaction

In modern existence, the nth order chemical reaction problem with mass transfer

phenomenon has been a theme of unlimited devotion in the former few spans.

Quite a lot of investigators on account of its completed uses in various indus-

trial developments, which comprises energy transmission in a damp chilling tower,

ventilation disappearance at the shallow of a water body, engendering electric

power, plantations of fruit plants, salting of plastics, biochemical dispensation of

ingredients, and harvests destruction owing to chilly etc. A number of authors

has conceded out their examination to explore the impact of nth order chemical

reaction on heat-mass transmission flow problems [45–47].

Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 demonstrates the basics of fluid dynamics. A brief discussion about

the basic definitions, governing laws for fluid motion and governing equations have

been illustrated. The solution methodology has also been demonstrated. Dimen-

sionless physical quantities of interest are also mentioned briefly related to the

problems.

Chapter 3 interprets a review analysis of the study which has been performed

by Mabood et al. [48]. This work has covered the scope related to a numeri-

cal study of viscousodissipation, radiation and chemicaloreaction of MHD stag-

nationopoint flowoof nanofluids in porous medium. Heatoand mass exchange of

nanofluidopast through a flatoplate in permeable surface is analyzed. The sys-

temoof dimensionless ODEsois solved numericallyoby shooting method. The be-

haviour of different physical parameters is explained through tables and graphs.

The result achieved are also compared with the publishedoresults of Ref [48] found

anoexcellentoagreement between them.
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Chapter 4 presents the extension to the forgoing work of Mabood et al. [48] by

adding the effects of Joule heating, inclined magnetic field and nth order chemical

reaction. By utilizing similarity transformations we transform the set of governing

nonlinear PDEs into the set of nonlinear ODEs. Results for various parameters

are discussed through graphs and tables.

Chapter 5 summarizes the whole study with concluding remarks.

All the referencesoused in the research work areolisted in Biblography.



Chapter 2

Preliminaries

In this chapter, some basic definition governing laws and dimensionless quantities

are presented, which will be used in the next chapters. Dimensionless quantities

are also discussed which have been used in subsequent chapters. Furthermore, a

brief discussion has been done for the shooting method which has been used to

find the numerical results.

2.1 Some ImportantoDefinitions

Definition 2.1.1. (Fluid) [49]

“A substance exists in three primary phases. solid, liquid and gas. (At very high

temperatures, it also exists as plasma) A substance in the liquid or gas phase is

referred to as a fluid. Distinction between a solid and fluid is made on the basis

of substances ability to resist an applied shear or (tangential) stress that tends to

change its shape.”

Definition 2.1.2. (Flow) [50]

“A material that undergoes deformation when certain forces act upon it and con-

tinuously increases without limit then such phenomenon is called flow.”

8
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Definition 2.1.3. (Fluid Mechanics) [51]

“Fluid mechanics deals with the behaviour of fluids at rest or in motion. There

are two branches of fluid mechanics.”

Definition 2.1.4. (Fluid Statics) [51]

“Fluid static is the part of fluid mechanics, that deals with the fluid and its

characteristics at the constant position.”

Definition 2.1.5. (Fluid Dynamics) [51]

“The branch of fluid mechanics that covers the properties of the fluid in the state

of progression from one place to another is called fluid dynamics.”

Definition 2.1.6. (Hydrodynamics) [52]

“The study of the motion of fluids that are practically incompressible such as

liquids, especially water and gases at low speeds is usually referred to as hydrody-

namics.”

Definition 2.1.7. (Magnetohydrodynamics) [53]

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct-

ing fluids in the presence of magnetic fields, either externally applied or generated

within the fluid by inductive action.”

Definition 2.1.8. (Newton’s Law of Viscosity) [54]

“In a Newtonian fluid the stress is directly proportional to the velocity gradient. If

τ ∗ be the force per unit area, then for one-dimensional flow u(y) it can be expressed

as

τ ∗ = µ

(
du

dy

)
.

In the above relation τ ∗ and µ are stress and dynamic viscosity, respectively.”

2.2 Classification of Fluids

Fluids are basically divided into two main classes that are: Ideal or Perfect fluids

and Real fluids.
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Definition 2.2.1. (Ideal Fluids) [49]

“Ideal or perfect fluids are those fluids having viscosity equal to 0, i.e., µ = 0.

Such fluids do not have shear forces and are fictitious in nature. These are incom-

pressible and also known as inviscid fluids.”

Definition 2.2.2. (Real Fluids) [49]

“Real or viscous fluids have non-zero viscosity, i.e., µ 6= 0. These fluids always

possess non-zero viscosity and are either compressible or incompressible in nature.

Major real fluid classes are termed as Newtonian and non-Newtonian fluids.”

2.3 Typesoof Flow

Definition 2.3.1. (Compressibleoand incompressibleoflows) [52]

“A flow is classified as being compressible or incompressible, depending on the level

of variation of density during flow. Incompressibility is an approximation, and a

flow is said to be incompressible if the density remains nearly constant through-

out. Therefore, the volume of every portion of fluid remains unchanged over the

course of its motion when the flow (or the fluid) is incompressible. The densities

of liquids are essentially constant, and thus the flow of liquids is typically incom-

pressible. Therefore, liquids are usually referred to as incompressible substances.

A pressureof 210 atm, for example, causes the density of liquid water at 1 atm to

change by just 1 percent. Gases, on the other hand, are highly compressible. A

pressure change of just 0:01 atm, for example, causes a change of 1 percent in the

density of atmospheric air.”

Definition 2.3.2. (Steadyoversusounsteady flow) [52]

“The terms steady and uniform are used frequently in engineering, and thus it

is important to have a clear understanding of their meanings. The term steady

implies no change at a point with time. The opposite of steady is unsteady. The

term uniform implies no change with location over a specified region. These mean-

ings are consistent with their everyday use (steady girlfriend, uniform distribution,

etc.). The terms unsteady and transient are often used interchangeably, but these
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terms are not synonyms. In fluid mechanics, unsteady is the most general term

that applies to any flow that is not steady, but transient is typically used for de-

veloping flows. When a rocket engine is fired up, for example, there are transient

effects (the pressure builds up inside the rocket engine, the flow accelerates, etc.)

until the engine settles down and operates steadily. The term periodic refers to

the kind of unsteady flow in which the flow oscillates about a steady mean.”

Definition 2.3.3. (Laminaroversusoturbulent flow) [52]

“Some flows are smooth and orderly while others are rather chaotic. The highly

ordered fluid motion characterized by smooth layers of fluid is called laminar.

The word laminar comes from the movement of adjacent fluid particles together

in laminates. The flow of high-viscosity fluids such as oils at low velocities is

typically laminar. The highly disordered fluid motion that typically occurs at

high velocities and is characterized by velocity fluctuations is called turbulent.

The flow of low-viscosity fluids such as air at high velocities is typically turbulent.

The flow regime greatly influences the required power for pumping. A flow that

alternates between being laminar and turbulent is called transitional.”

Definition 2.3.4. (Viscous and inviscid flow) [52]

“When two fluid layers move relative to each other, a friction force develops be-

tween them and the slower layer tries to slow down the faster layer. This internal

resistance to flow is quantified by the fluid property viscosity, which is a measure

of internal stickiness of the fluid. Viscosity is caused by cohesive forces between

the molecules in liquids and by molecular collisions in gases. There is no fluid with

zero viscosity, and thus all fluid flows involve viscous effects to some degree. Flows

in which the frictional effects are significant are called viscous flows. However, in

many flows of practical interest, there are regions (typically regions not close to

solid surfaces) where viscous forces are negligibly small compared to inertial or

pressure forces. Neglecting the viscous terms in such inviscid flow regions greatly

simplifies the analysis without much loss in accuracy.”

Definition 2.3.5. (Newtonian and non-Newtonian fluids) [52]

“Fluids for which the viscosity is not independent of the rate of shear are referred
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as non-Newtonian and the liquids for which the viscosity is independent of the

rate of shear are called Newtonian fluids.”

2.4 Fluid Properties

Definition 2.4.1. (Heat Transfer) [51]

“It is the energy transfer due to temperature difference. At the point when there

is a temperature contrast in a medium or between media, heat transfer must take

place. Heat transfer is normally conducted from a high temperature region to a

low temperature.”

Definition 2.4.2. (Mass Transfer) [51]

“Mass exchange is the total movement of mass from one place to another.”

Definition 2.4.3. (Stagnation Point) [51]

“It is a point in a flow field where the fluid velocity is zero. It exists at the surface

of objects in the field where fluid is rest by the object. Static pressure is the

example of stagnation point.”

Definition 2.4.4. (Viscous Dissipation) [51]

“The process in which the work done by fluid is converted into heat is called

viscous dissipation.”

Definition 2.4.5. (Radiation) [51]

“Radiation is the energy transfer due to the release of photons or electromagnetic

waves from a surface volume. Radiation doesn’t require any medium to transfer

heat. The energy produced by radiation is transformed by electromagnetic waves.”

Definition 2.4.6. (Boundary Layer) [55]

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the

relative velocity between the fluid and the solid to become almost exactly zero

for a stationary surface. Therefore, the fluid velocity in the region near the wall

must reduce to zero. This is called no slip condition. In that condition there is no
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relative motion between the fluid and the solid surface at their point of contact.

It follows that the flow velocity varies with distance from the wall; from zero at

the wall to its full value some distance away, so that significant velocity gradients

are established close to the wall. In most cases this region is thin (compared to

the typical body dimension), and it is called a boundary layer.”

Figure 2.1: Figure of Boundary Layer.

Definition 2.4.7. (Density) [56]

“Density is defined as mass per unit volume. It is represented by ρ. Let m be the

mass of fluid and V be the volume, then density is given by

ρ =
m

V
.”

Definition 2.4.8. (Pressure) [56]

“A normal force F exerted by a fluid per unit area A is called pressure. It is

formulated as

p =
F

A
.”

Definition 2.4.9. (Velocity Field) [49]

“It is the representation of net motion of molecules of fluid from one point in space

to another point as a function of time. It is expressed as

V = u(x, y, z, t)̂i+ v(x, y, z, t)ĵ + w(x, y, z, t)k̂,

where V represents three-dimensional velocity field with respective components

u, v and w.
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Definition 2.4.10. (Streamlines) [49]

“A streamline is a line that is every where tangent to velocity field of fluid. Stream-

lines show pictorial representation of flow. For a three-dimensional velocity field

it can be written as
dx

u
=
dy

v
=
dz

w
.”

Definition 2.4.11. (Substantial or Material Derivative) [49]

“If ξ represent any property of fluid, with dx, dy, dz and dt are arbitrary changes

of four independent variables, then total differential change in ξ is given by

dξ

dt
= u

dξ

dx
+ v

dξ

dy
+ w

dξ

dz
+
dξ

dt
.

The above mathematical relation is called substantial derivative or material deriva-

tive.”

Definition 2.4.12. (Acceleration of Flow Field) [49]

“Acceleration is the rate of change of velocity of fluid with respect to time. Ac-

celeration a of fluid is mathematically given by

a =
dV

dt
,

similarly by definition 2.4.11, acceleration for a three-dimensional velocity flow

field is written below

a = u
∂V

∂x
+ v

∂V

∂y
+ w

∂V

∂z
+
∂V

∂t
.”

Definition 2.4.13. (Enthalpy) [49]

“It is the combination of internal energy of fluid Ẽ and pressure energy
(
p
ρ

)
. This

fluid property is called enthalpy which is represented by ĥ.

ĥ =

(
Ẽ +

p

ρ

)
.”
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2.5 Some Basic Definitions of Heat Transfer

Definition 2.5.1. (Conduction) [51]

“Conduction is the process in which heat is transferred through the material be-

tween the objects that are in physical contact. For example: picking up a hot cup

of tea.”

Definition 2.5.2. (Convection) [51]

“Convection is a mechanism in which heat is transferred through fluids (gases or

liquids) from a hot place to a cool place. For example: Macaroni rising and falling

in a pot of boiling water.”

Definition 2.5.3. ( Forced Convection) [51]

“Forced convection is a process in which fluid motion is produced by an external

source. It is a special type of heat transfer in which fluid moves in order to increase

the heat transfer. In other words, a method of heat transfer in which heat transfer

is caused by dependent source like a fan and pump etc, is called forced convection.

For example: Gas convection heaters have a gas burner to generate the heat, and

a fan to force the heated air to circulate around the room.”

Definition 2.5.4. ( Natural Convection) [51]

“Natural convection is a heat transport process, in which the heat transfer is not

caused by an external source, like pump, fan and suction. It happens due to the

temperature differences which affect the density of the fluid. It is also called free

convection. Example: Daily weather.”

Definition 2.5.5. ( MixedoConvection) [51]

“It is a combination of both forced convection and natural convection. For example

if fluid is moving upward along the moment of the vertical stretching sheet is forced

between while in the same phenomena fluid is freely falling due to the gravity which

is forced convection. When these two phenomena appear in the same model then

such kind of flow is mixed convection.”

Definition 2.5.6. (Thermal Conductivity) [49]

“According to Fourier’s law: The heat transfer rate q∗∗ in any direction n̄ per
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unit area is measured normal to n̄. It is given by

q∗∗ = −k
(
∂T

∂n̄

)
,

where k is called thermal conductivity which is an important thermal property of

fluid. ”

Definition 2.5.7. (Thermal Diffusivity) [51]

“Thermal diffusivity is material,s property which identifies the unsteady heat con-

duction. Mathematically, it can be written as,

α =
k

ρCp
,

where k, ρ and Cp represents the thermal conductivity of material, the density and

the specific heat capacity. In SI system unit and dimension of thermal diffusivity

are m2s−1 and [LT−1] respectively. ”

2.6 DimensionlessoNumbers

Definition 2.6.1. (ReynoldsoNumber Re) [51]

“It is a dimensionless number which is used to clarify the different flow behaviours

like turbulent or laminar flow. It helps to measure the ratio between inertial force

and the viscous force. Mathematically,

Re =
ρU2

L
µU
L2

=⇒ Re =
LU

ν
,

where U denotes the free stream velocity, L the characteristics length. At low

Reynolds number, laminar flow arises where the viscous forces are dominant. At

high Reynolds number, turbulent flow arises where the inertial forces are domi-

nant.”

Definition 2.6.2. (Prandtal NumberoPr) [51]

“It is the ratio between the momentum diffusivity (ν) and thermal diffusivity (α).
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Mathematically, it can be defined as

Pr =
ν

α
=

µ/ρ

k/cp
=
µcp
k
,

where µ represents the dynamic viscosity, cp denotes the specific heat and k stands

for thermal conductivity. The relative thickness of thermal and momentum bound-

ary layer is controlled by Prandtal number. For small Pr, heat distributed rapidly

corresponds to the momentum.”

Definition 2.6.3. (NusseltoNumber Nu) [51]

“It is the ratio of the convective to the conductive heat transfer to the boundary.

Mathematically,

Nu =
hL

k
,

where h stands for convective heat transfer, L for the characteristics length and k

stands for the thermal conductivity.”

Definition 2.6.4. (Sherwood NumberoShx) [51]

“It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Shx =
kL

D
,

here L is characteristics length, D is the mass diffusivity and k is the mass transfer

coefficient.”

Definition 2.6.5. (Skin Friction Coefficient Cfx) [51]

“Skin friction coefficient occurs between the fluid and the solid surface which leads

to slow down the motion of the fluid. The skin friction coefficient can be defined

as

Cfx =
2τw
ρU2

,

where τw denotes the wall shear stress, ρ the density and U the free-stream veloc-

ity.”
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Definition 2.6.6. (Eckert Number Ec) [51]

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

cp∇T
, ”

2.7 Basic Governing Laws and Equations for Fluid

Motion

We need to satisfy the basic fundamental laws of physics which include mass

conservation, momentum conservationo(Newton’s secondolaw of motion) and en-

ergyoconservation (First lawoof thermodynamics) to describe the fluid dynam-

ics [49, 57–59],

Definition 2.7.1. (Law ofoConservation ofoMass)

“The mass inside a system is conserved and does not change. or

The time rate of change of mass inside a system is equals to zero.

i.e.,
Dm

Dt
= 0,

where m is the mass of fluid flowing in a system or control volume [49, 57]”

Definition 2.7.2. (Continuity Equation) [59]

“The conservation of mass of fluid entering and leaving the control volume, the

resulting mass balance is called the equation of continuity. From this law it is

concluded that mass is conserved. Mathematically form is

∂ρ

∂t
+∇.(ρV) = 0.

where, V is velocity of fluid. For steady case rate of time will be constant, so

continuity equation becomes

∇.(ρV) = 0.
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For the case of incompressible flow, density does not changes so continuity equation

can be re-written as,

∇.V = 0. (2.1)

For incompressible and irrotational flow, the Eq. (2.1) can be transformed in terms

of velocity potential ψ, which is given by

∇2ψ = 0. (2.2)

Eq. (2.2) is known as Laplace equation.”

Definition 2.7.3. (Law of Conservation of Momentum)

“To study the momentum equation, Newton’s second law is of great importance.

Newton’s law of motion states that:

The rate of change of momentum of a body is equal to net forces acting on that

body.

This statement leads to law of conservation of momentum, which states that:

The momentum of a system remains constant when the net force acting on it is

zero.”

Definition 2.7.4. (Momentum Equation)

“The principle of conservation of momentum can be expressed in the form of mo-

mentum equation, which is formulated as [49, 57]

ρ

(
∂V

∂t
+ V.(∇V)

)
= −∇p+∇.τ ∗ij + Fg, (2.3)

where p, τ ∗ij,Fg = ρg are termed as hydrostatic pressure, viscous stress tensor

and body force. Viscous sress tensor τ ∗ij, is a tensor of rank 2 having nine stress

components. It is written as

τ ∗ij =


τ ∗xx τ ∗xy τ ∗xz

τ ∗yx τ ∗yy τ ∗yz

τ ∗zx τ ∗zy τ ∗zz

 , (2.4)
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or

τ ∗ij =


σ∗x τ ∗xy τ ∗xz

τ ∗yx σ∗y τ ∗yz

τ ∗zx τ ∗zy σ∗z

 , (2.5)

In Eq. (2.7), τ ∗xy, τ
∗
xz, τ

∗
yx, τ

∗
yz, τ

∗
zx and τ ∗zy are known as shear stresses while σ∗x, σ

∗
y

and σ∗z are called normal stresses.

In the caseoof incompressible and inviscidoflows, the stress termoin Eq. (2.3) is

avoided to get the most simplified equation. Such momentum equation is known

as the “Euler’s momentum equation”. It canobe written as

ρ

(
∂V

∂t
+ V.(∇V)

)
= −∇p+ Fg.” (2.6)

Definition 2.7.5. (Navier-Stokes Equation)

“By redefining Eq. (2.3), given below is the most well known form of momen-

tum equation, usually known as Navier-Stokes equation. It was first introduced

by Claude-Louis Navier in 1821 and further improved by Sir George Gabriel

Stokes [49, 58].

ρ

(
∂V

∂t
+ V.(∇V)

)
= −∇.Tij + Fg, (2.7)

where Tij is called Cauchy stress tensor and Fg is known as body force term.

Cauchy stressotensor is further definedoas below

Tij = −pI︸︷︷︸
(pressure distribution term)

+ τ ∗ij︸︷︷︸
(deviatoric stress tensor term)

. (2.8)

In Eq. (2.8) the deviatoric stress tensor, i.e., τ ∗ij for Newtonian fluids is given

below

τ ∗ij = µA1, (2.9)

where A1 is called first Rivlin Ericksen tensor [60] and its formulation is given by

A1 = ∇V + (∇V)T . (2.10)
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The complete constitutive relation in Eq. (2.8) can be expressed as

Tij = −pI + µ
[
∇V + (∇V)T

]
. (2.11)

The gradient relation of three-dimensionalovelocity fieldoV(u, v, w) is writtenoas

∇V =


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 ,

and

(∇V)T =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 .

By substituting these relations into Eq. 2.10,

A1 =


2∂u
∂x

∂v
∂x

+ ∂u
∂y

∂w
∂x

+ ∂u
∂z

∂u
∂y

+ ∂v
∂x

2∂v
∂y

∂w
∂y

+ ∂v
∂z

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

2∂w
∂z

 . (2.12)

Substitution of Eq.o(2.12) intooEq. (2.9) leadsoto the following

τ ∗ij =


2µ∂u

∂x
µ
(
∂v
∂x

+ ∂u
∂y

)
µ
(
∂w
∂x

+ ∂u
∂z

)
µ
(
∂u
∂y

+ ∂v
∂x

)
2µ∂v

∂y
µ
(
∂w
∂y

+ ∂v
∂z

)
µ
(
∂u
∂z

+ ∂w
∂x

)
µ
(
∂v
∂z

+ ∂w
∂y

)
2µ∂w

∂z

 , (2.13)

and from Eq. (2.9), pressure term is written in matrix form as

− pI =


−p 0 0

0 −p 0

0 0 −p

 (2.14)
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By using Eqs. (2.13) and (2.14) into Eq. (2.9) we get

Tij =


Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 ,

and following areothe x, y and zocomponents of ∇.Tij

(∇.Tij)x = −∂p
∂x

+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (2.15)

(∇.Tij)y = −∂p
∂y

+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (2.16)

(∇.Tij)z = −∂p
∂z

+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
. (2.17)

After the substitution of Eqs. (2.15) to (2.17) into Eq. (2.7), we will get a set of

equations known as “Navier-Stokes equations” for Newtonian and incompressible

flow, i.e.,

ρ

(
∂V

∂t
+ V.(∇V)

)
= −∇p+ µ∆V + Fg.” (2.18)

Definition 2.7.6. (First Law ofoThermodynamics)

“First law of thermodynamics is nothing more than the principle of conservation

of energy. First law of thermodynamics states that:

The variation in internal energy Ẽ of a system during any transformation is equal

to the amount of energy that system receives from the environment and the work

done by the system. Mathematically, it is represented as

∆Ẽ = Q̃− W̃ ,

where ∆Ẽ, Q̃ and W̃ are termed as change in internal energy, heat added to the

system and work done by the system respectively.”

Definition 2.7.7. (Energy Equation)

“The energy conservation of a system canobe expressedoin rate form as:

Rateoof change ofoenergy in system or control volume = (Rateoof in flowoof energy

Rate of out flow of energy) + (Rateoof heat addition due to conduction) + (Rateo
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of internal heat generation within control volume) + (Rate ofowork done by the

forces acting on controlovolume).

The energyoequation in terms of first law of thermodynamics is written below [61,

62]

ρ
DẼ

Dt
+∇q∗∗ − q∗∗∗ + p(∇.V)− τ ∗ij.(∇.V) = 0, (2.19)

where

τ ∗ij.(∇V) =

(
σx
∂u

∂x
+ τ ∗xy

∂u

∂y
+ τ ∗xz

∂u

∂z

)
+

(
τ ∗yx

∂v

∂x
+ σy

∂v

∂y
+ τ ∗yz

∂v

∂z

)
+

(
τ ∗zx

∂w

∂x
+ τ ∗zy

∂w

∂y
+ σz

∂w

∂z

)
.

(2.20)

Substituting the values from Eq. (2.13) into Eq. (2.20), we get

τ ∗ij.(∇V) =µ

[
2

((
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
)

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2 ]
,

= µΦ, (2.21)

where Φ is called “viscous dissipation”.

After applying Eq. (2.21) into Eq. (2.19), we get

ρ
DẼ

Dt
+∇q∗∗ − q∗∗∗ + p(∇.V)− µΦ = 0, (2.22)

where the rate of work done by pressure forces on fluid, i.e., p(∇.V) becomes zero

due to the contribution of continuity equation, so

ρ
DẼ

Dt
+ ρV.(∇Ẽ) +∇q∗∗ − q∗∗∗ − µΦ = 0. (2.23)

Adopting the definition 2.4.13 of enthalpy into Eq. (2.23), it can beowritten as

Ẽ =

(
ĥ− p

ρ

)
, (2.24)
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ρ

∂
(
ĥ− p

ρ

)
∂t

+ ρV

(
∇
(
ĥ− p

ρ

))
+∇q∗∗ − q∗∗∗ − µΦ = 0, (2.25)

ρ
∂ĥ

∂t
− ∂p

∂t
+ ρ~V .

(
∇ĥ
)
−V. (∇p) = −∇q∗∗ + q∗∗∗ + µΦ. (2.26)

After applying the definition of Fourier’s law 2.5.6, we get

ρ
∂ĥ

∂t
− ∂p

∂t
+ ρV.

(
∇ĥ
)
−V. (∇p) = −∇.(−κ∇T ) + q∗∗∗ + µΦ, (2.27)

ρ

(
∂ĥ

∂t
+ V.

(
∇ĥ
))

=

(
∂p

∂t
+ V. (∇p)

)
+∇.(κ∇T ) + q∗∗∗ + µΦ. (2.28)

Substituting another physical relationship of enthalpy ĥ, which is defined as [62]:

dĥ = CpdT,

then Eq. (2.28) will be transformed into

ρCp

(
∂T

∂t
+ V.(∇T )

)
=

(
∂p

∂t
+ V. (∇p)

)
+ (κ∆T ) + q∗∗∗ + µΦ, (2.29)

ρCp

(
DT

Dt

)
=
Dp

Dt
+ (κ∆T ) + q∗∗∗ + µΦ. (2.30)

If the fluid is viscous, incompressible and steady, also for simplicity by ignoring

the internal heating and viscous dissipation effects we get the following most gen-

eralized form of energy equation:

(
u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
=

κ

ρCp

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
, (2.31)

(
u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= α

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
, (2.32)

where α is called thermal diffusivity.”
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2.8 Solution Methodology

“Shooting Method is used to solve the higher order nonlinear ordinary differential

equations. To implement this technique, we first convert the higher order ODEs

to the system of first order ODEs. After that we assume the missing initial con-

ditions and the differential equations are then integrated numerically using the

Runge-Kutta method as an initial value problem. The accuracy of the assumed

missing initial condition is then checked by comparing the calculated values of

the dependent variables at the terminal point with their given value there. If the

boundary conditions are not fulfilled up to the required accuracy, with the new

set of initial conditions, then they are modified by Newtons method. The process

is repeated again until the required accuracy is achieved. To explain the shooting

method, we consider the following general second order boundary value problem,

y′′(x) = f(x, y, y′(x)) (2.33)

subject to the boundary conditions

y(0) = 0, y(L) = A (2.34)

[63] By denoting y by y1 and y′1 by y2, Eq. (2.33) can be written in the form of

following system of first order equations.

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y1(L) = A.

 (2.35)

Denote the missing initial condition by y2(0) = s, to have

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y1(0) = s.

 (2.36)

Now the problem is to find s such that the solution of the IVP (2.36) satisfies the

boundary condition y(L) = A. In other words, if the solutions of the initial value
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problem (2.36) are denoted by y1(x, s) and y2(x, s), one should search for that

value of s which is an approximate root the equation.

y1(L, s)− A = φ(s) = 0. (2.37)

To find an approximate root of the Eq. (2.37) by the Newtons method, the itera-

tion formula is given by

sn+1 = sn −
φ(sn)

dφ(sn)/ds
, (2.38)

sn+1 = sn −
y1(L, sn)− A
dy1(L, sn))/ds

. (2.39)

To find the derivatives of y1 with respect of s, differentiate (2.36) with respect to

s. For simplification, use the following notations

dy1
ds

= y3,
dy2
ds

= y4 (2.40)

y′3 = y4, y3(0) = 0,

y′4 =
∂f

∂y1
y3 +

∂f

∂y2
y4, y4(0) = 1.

 (2.41)

Now, solving the IVP Eq. (2.41), the value of y3 at L can be computed. This

value is actually the derivative of y1 with respect to s computed at L. Setting the

value of y3(L, s) in Eq. (2.39), the modified value of s can be achieved. This new

value of s is used to solve the Eq. (2.36) and the process is repeated until the

value of s is within a described degree of accuracy.”



Chapter 3

Effect of ViscousoDissipation and

ChemicaloReaction on MHD

StagnationoPoint Flow of

Nanofluids in Porous Medium

3.1 Introduction

Numerical study of MHD viscous, incompressible and two-dimensionalonanofluid

flow past a flat plateoin a uniform permeable mediumohas been taken under con-

sideration. Conversion of non-linear partialodifferential equations describingothe

flow problem into a set of ordinaryodifferential equations has been carried out

by employing appropriate similarity transformations. Shooting method has been

employed for the numerical treatment of the proposed flow equations. Effect of

pertinent flowoparameters on the non-dimensional velocity,otemperature and con-

centration profilesohas been illustrated via tables and graphs. The limiting case of

the present study affirms that the obtained numerical results reflect a very good

agreement with those from published literature. In this chapter, a detailed review

of [48] has been provided.

27
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3.2 Problem Formulatiuon

The present model aims to investigate the incompressible water base nanofluids

containingotwo types ofonanoparticles, i.e. Coppero(Cu) and Alumina (Al2O3)

flow over aoflat plate in a porous medium. Magnatic field ofostrength B is

applied normaloto the fluid flow. Under the effect of thermal radiationoand

heatoabsorption parameter the characteristicsoof flow; heat and massotransfer

isoexamined. The coordinateosystem isochosen such a way that x-axisois alongothe

flow where as y-axisois perpendicular to theoplate. The surfaceoof the flatoplate

isomaintained at a constantotemperature Tw = T∞ + T0e
x
2L higher thanothe con-

stantotemperature T∞oof the ambientonanofluid T0 is a constant measuringothe

rate ofotemperature increase alongothe surface. It has been assumedothat the

velocityoof the flat plate isou = ae
x
L andothe free stream velocity U∞. The con-

centrationoat the surface is Cw = C∞ + C0e
x
2L , whichois also higher then the

ambient concentration C∞. The initial reference concentration denoted by C0.

The geometryoof the flowomodel is shown inoFigure 3.1.

Figure 3.1: Geometry of physical model.
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Under theoconstraints, theogoverning boundary layer equationsofor proposed prob-

lem are givenoas [48] :

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2

ρnf
(U∞ − u), (3.2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρcp)nf

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−K(C − C∞). (3.4)

The correspondingoconditions at the boundary are

u = v = 0, T = Tw = T∞ + T0e
x
2L ,

C = Cw = C∞ + C0e
x
2L ,

 at y = 0,

u = U∞ = ae
x
L , T = T∞, C = C∞, as y →∞,

 (3.5)

here σs isothe electricaloconductivity of theobase-fluid whereas σnf , νnf , ρnf , αnf ,

knf , are the electricoconductivity, the effectiveoviscosity, theoeffective density, the

effective thermalodiffusivity and the thermaloconductivity of the nanofluid, D is

the species diffusivity, k = k0e
−x
L is the non-uniform permeability, K(x) is the

variable reaction rate given by K(x) = K0e
x
L , respectively. These quantities are

formulated as follows [48]:

ρnf = (1− φ)ρf + φρs,

µnf =
µf

(1− φ)2.5
,

αnf =
knf

(ρcp)nf
,

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s,

σnf = (1− φ)σf + φσs,

knf = kf
ks + 2kf − 2φ(kf − ks)
ks + 2kf + 2φ(kf − ks)

,

νf =
µf
ρf
.
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Item ρ(kg/m3) cp(J/kg K) k(W/mK) β × 105(K−1)

Pure water 997.1 4179 0.613 21

Copper 8933 385 401 1.67

Alumina 3970 765 40 0.85

Table 3.1: Thermo-physicaloproperties ofowater andonanoparticles.

The Rosseland radiativeoheat flux qr, is given by

qr = −4σ∗

3k∗
∂T 4

∂y
, (3.6)

where σ∗ois the Stefan-Boltzmanoconstant and k∗ois the absorptionocoefficient.

If the temperatureodifference is very small, then the temperature T 4 canobe ex-

panded about T∞ousing Tayloroseries, asofollows:

T4 = T 4
∞ +

4T 3
∞

1!
(T − T∞)1 +

12T 2
∞

2!
(T − T∞)2 +

24T 1
∞

3!
(T − T∞)3 +

24T∞
4!

(T − T∞)4.

Ignoring the higher order terms, we have

T 4 = T 4
∞ + 4T 3

∞(T − T∞),

⇒ T 4 = T 4
∞ + 4T 3

∞T − 4T 4
∞,

⇒ T 4 = 4T 3
∞T − 3T 4

∞,

⇒ ∂T 4

∂y
= 4T 3

∞
∂T

∂y
. (3.7)

Using (3.7) into (3.6) and then differentiating w.r.t y, weoget

∂qr
∂y

=
−16σ∗T 3

∞
3k∗

∂2T

∂y2
. (3.8)

Then (3.3) gets the following form:

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

16σ∗T 3
∞

3(ρcp)nfk∗
∂2T

∂y2
+

νnf
(ρcp)nf

(
∂u

∂y

)2

. (3.9)
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3.3 Similarity Transformation

For theoconversion ofothe mathematicalomodel (3.1)-(3.4)ointo the dimensionless

form, theofollowing similarityotransformation has been utilized from [48] as:

η = y

√
a

2Lνf
e

x
2L , ψ =

√
2aLνfe

x
2Lf(η), θ(η) =

T − T∞
Tw − T∞

, h(η) =
C − C∞
Cw − C∞

.

The detailed procedure for the conversion of the partial differential Eqs.o(3.1)-

(3.4) to the ordinaryodifferential equations in the dimensionless form has been

discussed below:

Let ψ be theostream functionosatisfying the continuityoequation in theofollowing

sense:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.10)

Consider the velocity components and there partial derivative as follows:

u =
∂ψ

∂y

=
∂ψ

∂η

∂η

∂y

=
√

2aLνfe
x
2Lf ′(η)

√
a

2νfL
e

x
2L

=

√
2a2Lνf
2νfL

e
2x
2Lf ′(η) = ae

x
Lf ′(η).

∂u

∂x
=

∂

∂x

(
ae

x
Lf ′(η)

)
= a

(
∂f ′(η)

∂η
.
∂η

∂x
.e

x
L + f ′(η).

∂

∂x
(e

x
L )

)
= a

(
f ′′(η).

∂η

∂x
.e

x
L + f ′(η).

∂

∂x
(e

x
L )

)
= a

(
f ′′(η).y

√
a

2νfL
e

x
2L .

1

2L
e

x
L +

1

L
.f ′(η)e

x
L

)
= a

(
ηf ′′(η)

2L
+

1

L
f ′(η)

)
e

x
L
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=
ae

x
L

2L

(
ηf ′′(η) + 2f ′(η)

)
. (3.11)

v = −∂ψ
∂x

= − ∂

∂x

(√
2aLνff(η)e

x
2L

)
= −

√
2aLνf

(
∂f(η)

∂x
e

x
2L + f(η)

∂

∂x
e

x
2L

)
= −

√
2aLνf

(
∂f(η)

∂η
.
∂η

∂x
.e

x
2L + f(η).e

x
2L

1

2L

)
= −

√
2aLνf

(
f ′(η)y

√
a

2νfL
e

x
2L .e

x
2L

1

2L
+

1

2L
f(η)e

x
2L

)
= −

√
2aLνf

(
ηf ′(η)e

x
2L

1

2L
+

1

2L
f(η)e

x
2L

)
= −

√
2aLνf

e
x
2L

2L

(
ηf ′(η) + f(η)

)
.

∂v

∂y
=−

√
2aLνf

(
∂

∂y
(ηf(η)) +

∂f ′(η)

∂y

)
1

2L
e

x
2L

=−
√

2aLνf

(
∂η

∂y
f ′(η) +

∂f ′(η)

∂η

∂η

∂y
η +

∂f(η)

∂η

∂η

∂y

)
1

2L
e

x
2L

=−
√

2aLνf

2L

(√
a

2Lνf
e

x
2Lf ′(η) + ηf ′′(η)

√
a

2Lνf
e

x
2L

+ f ′(η)

√
a

2Lνf
e

x
2L

)
e

x
2L

=−
√

2aLνf

2L

√
a

2Lνf

(
f ′(η) + ηf ′′(η) + f ′(η)

)
e

x
2L e

x
2L

=− ae
x
L

2L

(
ηf ′′(η) + 2f ′(η)

)
(3.12)

Verification of the continuity equation has been carried out as:

∂u

∂x
+
∂v

∂y
=

a

2L

(
ηf ′′(η) + 2f ′(η)

)
e

x
L − a

2L

(
ηf ′′(η) + 2f ′(η)

)
e

x
L = 0.

Next eq. (3.2) will be converted into the dimensionless form. The procedure

includes the following conversion of different terms from dimensional to theonon
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dimensional form:

∂u

∂y
= ae

x
L
∂f ′

∂η
.
∂η

∂y

= ae
x
L
x

L
f ′′(η).

√
a

2Lνf
e

x
2L

= a

√
a

2Lνf
e

3x
2Lf ′′(η)

u
∂u

∂x
=

(
ae

x
Lf ′(η)

)
a

2L

(
ηf ′′(η) + 2f ′(η)

)
e

x
L

=
a2

2L
e

2x
L

(
ηf ′(η)f ′′(η) + 2f ′2(η)

)
. (3.13)

v
∂u

∂y
=

(
−
√

2aLνf

2L
e

x
2Lηf ′(η) + f(η)

)
.

(
a

√
a

2Lνf
e

3x
2Lf ′′(η)

)
= −a

√
2aLνf

2L

√
a

2Lνf
e

x
2L e

3x
2L

(
ηf ′(η)f ′′(η) + f ′′(η)f(η)

)
= − a

2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + f ′′(η)f(η)

)
(3.14)

Using (3.13) and (3.14), the left side of (3.2) becomes:

u
∂u

∂x
+ v

∂u

∂y
=
a2

2L

(
ηf ′′(η)f ′(η) + 2f ′2(η)

)
− a2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + f ′′(η)f(η)

)
=
a2

2L
e

2x
L

(
2f ′2(η)− f ′′(η)f(η)

)
.

To convert the rightoside of Eq.o(3.2) into the dimensionless form, the following

procedure has been followed:

U∞
dU∞
dx

= ae
x
L
d

dx

(
ae

x
L

)
= ae

x
L

1

L
ae

x
L

=
a2

L
e

2x
L (3.15)
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∂2u

∂y2
=

∂

∂y

(
∂u

∂y

)
=

∂

∂y

(
a

√
a

2Lνf
e

3x
2Lf ′′(η)

)
= a

√
a

2Lνf
e

3x
2L
∂f ′′

∂η
.
∂η

∂y
= a

√
a

2Lνf
e

3x
2Lf ′′′(η)

√
a

2Lνf
e

x
2L

=
a2

2Lνf
e

2x
L f ′′′(η).

νnf
∂2u

∂y2
=
µnf
ρnf

(
∂2u

∂y2

)
=

µf
(1− φ)2.5((1− φ)ρf + φρs)

(
a2

2Lνf
e

2x
L f ′′′(η)

)
=

µfa
2e

2x
L

µf
ρf

2L(1− φ)2.5ρf (1− φ+ φρs
ρf

)
f ′′′(η)

(
∵ νf =

µf
ρf

)

=
a2e

2x
L

2L(1− φ)2.5(1− φ+ φρs
ρf

)
f ′′′(η) (3.16)

νnf
k

(U∞ − u) =
µf

k0e
− x

L (1− φ)2.5
(

(1− φ)ρf + φρs

) .(ae x
L − ae

x
Lf ′(η)

)

=
νfρf

ρfk0(1− φ)2.5
(

1− φ+ φρs
ρf

)ae x
L e

x
L

(
1− f ′(η)

)

=
aνfe

2x
L

k0(1− φ)2.5
(

1− φ+ φ ρs
ρf

)(1− f ′(η)

)
(3.17)

σB2

ρnf
(U∞ − u) =

σ(B0e
x
2L )2

(1− φ)ρf + φρs

(
ae

x
L − ae

x
Lf ′(η)

)
=

σ(B0e
x
2L )2

(1− φ)ρf + φρs
ae

x
L

(
1− f ′(η)

)
=

σB2
0ae

2x
L

ρf

(
1− φ+ φρs

ρf

)(1− f ′(η)

)
. (3.18)

Using (3.15) - (3.18) in the right side of (3.2), we get

U∞
dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2

ρnf
(U∞ − u)

=
a2e

2x
L

L
+

a2e
2x
L f ′′′(η)

2L(1− φ)2.5
(

1− φ+ φρs
ρf

)
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+
aνfe

2x
L

k0(1− φ)2.5
(

1− φ+ φ ρs
ρf

)(1− f ′(η)

)

+
σB2

0ae
2x
L

ρf

(
1− φ+ φρs

ρf

)(1− f ′(η)

)

Henceothe dimensionless formoof (3.2)obecomes

a2e
2x
L

2L

(
2f ′2(η)− f ′′(η)f(η)

)
=
a2e

2x
L

2L

[
2 +

1

(1− φ)2.5(1− φ+ φρs
ρf

)
f ′′′(η)

+
2Lνf

ak0(1− φ)2.5(1− φ+ φ ρs
ρf

)

(
1− f ′(η)

)
+

2LσB2
0

aρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)]
⇒ 2f ′2(η)− f ′′(η)f(η) = 2 +

f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ak0(1− φ)2.5(1− φ+ φ ρs
ρf

)
+

2LσB2
0

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ −2 + 2f ′2(η)− f ′′(η)f(η) =

f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ak0(1− φ)2.5(1− φ+ φ ρs
ρf

)
+

2LσB2
0

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)
+ 2

(
1− f ′2(η)

)
+ f(η)f ′′(η)[

1

(1− φ)2.5
(

1− φ+ φρs
ρf

)(2Lνf
ak0

+
2LσB2

0

aρf
(1− φ)2.5

)(
1− f ′(η)

)]
= 0.

(3.19)

Next, we include the procedure for the conversion of (3.3) into the dimensionless

form:

θ(η) =
T − T∞
Tw − T∞

⇒ T = (Tw − T∞)θ(η) + T∞

= (Tw − T∞)θ(η) + T∞

= (T∞ + T0e
x
2L − T∞)θ(η) + T∞

= T0e
x
2L θ(η) + T∞.



Viscous dissipation and chemical reaction for MHD... 36

∂T

∂x
= T0

(
θ(η)

∂

∂x
(e

x
2L ) + e

x
2L
∂θ(η)

∂η

∂η

∂x

)
+

∂

∂x
T∞

=
T0
2L

(
θ(η)e

x
2L + e

x
2L θ′(η)y

√
a

2Lνf
e

x
2L

)
=
T0
2L
e

x
2L (θ(η) + ηθ′(η)). (3.20)

u
∂T

∂x
= ae

x
Lf ′(η)

T0e
x
2L

2L

(
θ(η) + ηθ′(η)

)
= a

T0
2L
e

3x
2Lf ′(η)

(
θ(η) + ηθ′(η)

)
(3.21)

∂T

∂y
=

∂

∂y

(
T0e

x
2L θ(η)

)
= T0e

x
2L
∂θ(η)

∂η

∂η

∂y

= T0e
x
2L θ′(η)

√
a

2Lνf
e

x
2L

= T0e
x
L

√
a

2Lνf
θ′(η).

v
∂T

∂y
=

(
− 1

2L

√
2aLνfe

x
2L (ηf ′(η) + f(η))

)(
T0e

x
L

√
a

2Lνf
θ′(η)

)
= − T0

2L

√
2aLνf

√
a

2aLνf
e

x
2L e

x
2L

(
ηf ′(η) + f(η)

)
θ′(η)

= − T0
2L

√
2a2Lνf
2aLνf

e
3x
2L

(
ηf ′(η)θ′(η) + f(η)θ′(η)

)
= −aT0e

3x
2L

2L

(
ηf ′(η)θ′(η) + f(η)θ′(η)

)
(3.22)

Using (3.21) and (3.22), the left side of (3.3) gets theofollowing form:

u
∂T

∂x
+ v

∂T

∂y
=
aT0e

3x
2L

2L

(
f ′(η)θ(η) + ηf ′(η)θ′(η)

)
− aT0e

3x
2L

2L

(
ηf ′(η)θ′(η) + f(η)θ′(η)

)
=
aT0e

3x
2L

2L

(
f ′(η)θ(η)− f(η)θ′(η)

)
.
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To convert the right side of (3.3) into dimensionless form, we proceed as follows:

∂2T

∂y2
=

∂

∂y

(
∂T

∂y

)(
T0

√
a

2νfL
e

x
L θ′(η)

)
= T0

√
a

2νfL
e

x
L
∂θ′

∂η

∂η

∂y
= T0

√
a

2νfL
e

x
L θ′′(η)

√
a

2νfL
e

x
2L

= T0

(√
a

2νfL

)2

e
x
L e

x
2L θ′′(η)

=
aT0

2νfL
e

3x
2L θ′′(η)

αnf
∂2T

∂y2
=

knf
(ρcp)nf

aT0
2νfL

e
3x
2L θ′′(η). (3.23)

1

(ρcp)nf

∂qr
∂y

=
1

(ρcp)nf

−16σ∗T 3
∞

3k∗
aT0e

3x
2L

2νfL
θ′′(η)

=
−16σ∗T 3

∞
3k∗(ρcp)nf

aT0e
3x
2L

2Lνf
θ′′(η). (3.24)

µnf
(ρcp)nf

(
∂u

∂y

)2

=
µnf

(ρcp)nf

(
a

√
a

2Lνf
e

3x
2Lf ′′(η)

)2

=
µnf

(ρcp)nf

a3

2Lνf

(
e

3x
2L

)2
f ′′

2
(η) (3.25)

Using (3.23) - (3.25), the dimensionless form of right side of (3.3) is as follows.

αnf
∂2T

∂y2
− 1

(ρcp)

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

=
KnfT0ae

3x
2L

2νfL(ρcp)nf
θ′′(η) +

16σ∗T 3
∞aT0e

3x
2L

6k∗νfL(ρcp)nf
θ′′(η) +

a3
(
e

3x
2L

)2
µnf

2Lνf (ρcp)nf
f ′′

2
(η)

=
aT0e

3x
2L

2L

[
knf

νf (ρcp)nf
θ′′(η)

16σ∗T 3
∞

3k∗νf (ρcp)nf
θ′′(η)

+
µnf

(
a2e

3x
2L

)
νfT0(ρcp)nf

f ′′
2
(η)

]
=
aT0e

3x
2L

2L

[(
knf
kf

(ρcp)f
ρcp)nf

kf
ρcp)f

1

νf

)
θ′′(η) +

(
(ρcp)f
ρcp)nf

kf
(ρcp)fνf

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+

µnf
µf

(ρcp)f
ρcp)nf

µf
(ρcp)f

(
a2e

3x
2L

)
T0νf

 f ′′
2
(η)

]
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=
aT0e

3x
2L

2L

[ kf
knf

1(
1− φ+ φ(ρcp)s

(ρcp)f

) αf
νf

 θ′′(η)

(
∵ αf =

kf
(ρcp)f

)

+

 1(
1− φ+ φ(ρcp)s

(ρcp)f

) αf
νf

16σ∗T 3
∞

3k∗kf

 θ′′(η)

+
1

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

) µf
ρf

1

νf

(
a2e

3x
2L

)
T0(cp)f

f ′′
2
(η)

]

=
aT0e

3x
2L

2L

[(
knf
kf

1(
1− φ+ φ(ρcp)s

(ρcp)f

) 1

Pr

)
θ′′(η)

(
∵ Pr =

νf
αf

)

+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) 1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+

(
1

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

) (ae
x
L )2

(Tw − T∞)(cp)f

)
f ′′

2
(η)

]
(3.26)

(
∵ µf = ρfνf , T0 =

Tw − T∞
e

x
L

)

Therefore the dimensionless form of (3.3) becomes:

aT0e
3x
2L

2L

(
f ′(η)θ(η)− f(η)θ′(η)

)
=
aT0e

3x
2L

2L

[(
knf
kf

1(
1− φ+ φ(ρcp)s

(ρcp)f

) 1

Pr

)
θ′′(η)

+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) 1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
(U∞)2f ′′2(η)

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

)
(Tw − T∞)(cp)f

]

⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

[(
knf
kf

1(
1− φ+ φ(ρcp)s

(ρcp)f

))θ′′(η)

+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) 16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
Pr

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

) (U∞)2f ′′2(η)

(Tw − T∞)(cp)f

]
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⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1(
1− φ+ φ(ρcp)s

(ρcp)f

)[(knf
kf

)
θ′′(η)

+

(
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

]
⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1(
1− φ+ φ(ρcp)s

(ρcp)f

)[(knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

]
.

⇒
(

1− φ+
φ(ρcp)s
(ρcp)f

)(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

[(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

]
.

⇒
(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η) + Pr

(
1− φ+

φ(ρcp)s
(ρcp)f

)(
− f ′(η)θ(η) + f(η)θ′(η)

)
+

1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

]
.

Next, we include the procedure for the conversion of (3.4) into the dimensionless

form:

h(η) =
C − C∞
Cw − C∞

⇒ C = h(η)(Cw − C∞) + C∞

= h(η)(C0e
x
2L ) + C∞

∂C

∂x
= h(η)

∂

∂x
(C0e

x
2L )

= C0
e

x
2L

2L
h(η) + C0e

x
2L
∂h(η)

∂η

∂η

∂x

= C0
e

x
2L

2L
h(η) + C0e

x
2Lh′(η)y

√
a

2νfL

e
x
2L

2L

= C0
e

x
2L

2L
(h(η) + ηh′(η))
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u
∂C

∂x
= af ′(η)e

x
LC0

e
x
2L

2L
(h(η) + ηh′(η))

=
ae

3x
2L

2L
C0(h(η)f ′(η) + ηh′(η)f ′(η)) (3.27)

∂C

∂y
= C0e

x
2L
∂h(η)

∂η

∂η

∂y

= C0e
x
2Lh′(η)

√
a

2νfL
e

x
2L

= C0e
x
Lh′(η)

√
a

2νfL

v
∂C

∂y
= −

√
2aLνf

e
x
2L

2L
(ηf ′(η) + f(η))C0

√
a

2νfL
e

x
Lh′(η)

= −C0
ae

3x
2L

2L
(ηf ′(η)h′(η) + f(η)h′(η)). (3.28)

Using (3.27) and (3.28) in the left side of (3.4), we get

u
∂C

∂x
+ v

∂C

∂y
= C0

ae
3x
2L

2L
(h(η)f ′(η) + ηh′(η)f ′(η)− ηf ′(η)h′(η)− f(η)h′(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η)− h′(η)f(η)). (3.29)

To convert the right side of (3.4) into the dimensionless form, we proceed as follows:

∂2C

∂y2
=

∂

∂y

(√
a

2Lνf
C0e

x
Lh′(η)

)
=

(
C0e

x
L

√
a

2Lνf

∂h′(η)

∂η

∂η

∂y

)
= C0e

x
L

√
a

2Lνf
h′′(η)

√
a

2Lνf
e

x
2L

= C0e
x
L e

x
2L

a

2Lνf
h′′(η)

= C0e
3x
2L

a

2Lνf
h′′(η) (3.30)
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h(η) =
C − C∞
Cw − C∞

⇒ (C − C∞) = h(η)(Cw − C∞)

⇒ K(C − C∞) = K0e
x
Lh(η)(C∞ + C0e

x
2L − C∞)

= C0K0e
3x
2Lh(η) (3.31)

Using (3.30) and (3.31) in the right side of (3.4), we get

D
∂2C

∂y2
−K(C − C∞) = DC0e

3x
2L

a

2Lνf
h′′(η)− C0K0e

3x
2Lh(η)

= C0e
3x
2L

(
D

a

2Lνf
h′′(η)−K0h(η)

)
. (3.32)

Henceothe dimensionless formoof (3.4)obecomes:

C0
ae

3x
2L

2L
(f ′(η)h(η)− h′(η)f(η)) = C0e

3x
2L

(
Dah′′(η)

2Lνf
−K0h(η)

)
⇒ a

2L
(f ′(η)h(η)− h′(η)f(η)) =

Da

2Lνf
h′′(η)−K0h(η)

⇒(f ′(η)h(η)− h′(η)f(η)) =
D

νf
h′′(η)− 2L

a
K0h(η)

⇒νf
D

(f ′(η)h(η)− h′(η)f(η)) = h′′(η)− 2LK0νf
a

h(η)

⇒
(
νf
D

(f ′(η)h(η)− h′(η)f(η)) +
2LK0νf

a
h(η)

)
= h′′(η)

⇒h′′(η) +
νf
D

(f ′(η)h(η)− h′(η)f(η))− 2LK0νf
a

h(η) = 0.

The final dimensionless form of the governing model is:

1

(1− φ)2.5
(

1− φ+ φ ρs
ρf

)f ′′′ + ff ′′ + 2(1− f ′2)

+
1

(1− φ)2.5
(

1− φ+ φ ρs
ρf

)(P + (1− φ)2.5M)(1− f ′) = 0, (3.33)

(
knf
kf

+R

)
θ′′+Pr

(
1− φ+

φ(ρcp)s
(ρcP )f

)
(fθ′− f ′θ) +

1

(1− φ)2.5
Ecf ′′

2
= 0, (3.34)

h′′ + Sc(fh′ − f ′h− γh) = 0. (3.35)
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The associated boundaryoconditions (3.5) get the form:

f = 0, f ′ = 0, θ = 1, h = 1, at η = 0,

f ′ → 1, θ → 0, h→ 0, as η →∞.

 (3.36)

Different parametersoused inothe above equationsohave the followingoformulations:

M =
2σB2

0L

aρf
, Pr =

νf
αf
, Sc =

νf
D
,P =

2Lνf
ak0

R =
16σ∗T 3

∞
3k∗kf

, γ =
K0

a
,Ec =

U2
∞e

−3x
L

(cp)f (Tw − T∞)
. (3.37)

3.4 PhysicaloQuantities ofoInterest

The skinofriction coefficient is defined as:

Cfx =
2τw
ρfU2

∞
, (3.38)

where τwois the walloshear stress.

∂u

∂y
=

∂

∂y
(ae

x
Lf ′(η))

= ae
x
L
∂f ′(η)

∂(η)

∂(η)

∂y

= ae
x
Lf ′′(η)

√
a

2Lνf
e

x
2L

⇒ ∂u

∂y

∣∣∣∣
y=0

= a

√
a

2Lνf
e

x
L e

x
2Lf ′′(0)

τw = µnf

(
∂u

∂y

) ∣∣∣∣
y=0

=
µf

(1− φ)2.5
a

√
a

2Lνf
e

x
L e

x
2Lf ′′(0) (3.39)
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Using (3.38) in (3.39), we get the following form:

Cfx =
2

ρfU2
∞

µf
(1− φ)2.5

a

√
a

2Lνf
e

x
L e

x
2Lf ′′(0)

=
2

U2
∞

νf
(1− φ)2.5

a

√
a

2Lνf
e

x
L e

x
2Lf ′′(0) ∴ νf =

µf
ρf

=

√
2νfa

L

1

U2
∞
ae

x
L
x

2L

f ′′(0)

(1− φ)2.5

=

√
2νfa

L

1

U2
∞
U∞

x

2L

f ′′(0)

(1− φ)2.5
∴ U∞ = ae

x
L

=

√
2νfa

L

1

U∞

(
e

x
L

) 1
2

f ′′(0)

(1− φ)2.5

=

√
x
L√

xU∞
2vf

f ′′(0)

(1− φ)2.5

=

√
x
L√
Rex
2

f ′′(0)

(1− φ)2.5

⇒
Cfx

√
Rex
2√

x
L

=
f ′′(0)

(1− φ)2.5
.

The local Nusseltonumber isodefined as:

Nux = − xqw
kf (Tw − T∞)

, (3.40)

the wall heatoflux qw is givenoby

qw = −knf
(
∂T

∂y

) ∣∣∣∣
y=0

∂T

∂y
=

∂

∂y
(T0e

x
2L θ(η))

= T0e
x
2L
∂θ(η)

∂η

∂η

∂y

= T0e
x
2L θ′(η)

√
a

2Lνf
e

x
2L

= T0e
x
L

√
a

2Lνf
θ′(η)

qw = −knfT0e
x
L

√
a

2Lνf
θ′(0) (3.41)
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Using (3.40) in (3.41), we get the following form:

Nux = −
x(knfT0e

x
L )
√

a
2Lνf

θ′(0)

kf (Tw − T∞)

= −
−xknf (Tw − T∞)e

x
L

√
a

2Lνf
θ′(0)

kfe
x
2L (Tw − T∞)

∵ T0 =
(Tw − T∞)

e
x
2L

=
xknf

√
a

2Lνf
(e

x
L )

1
2 θ′(0)

kf

=
xknf

√
1

2Lνf
(ae

x
L )

1
2 θ′(0)

kf

=
xknf

√
1

2Lνf
(U∞)

1
2 θ′(0)

kf
∵ U∞ = ae

x
L

=
xknf

√
xU∞
2xLνf

θ′(0)

kf

=

√
x

2L

knf
kf

√
Rexθ

′(0) ∵ Rex =
xU∞
νf

⇒
√

2L

x

√
1

Rex
Nux = −knf

kf
θ′(0)

The localoSherwoodonumber isodefined as:

Shx =
xqm

D(Cw − C∞)
(3.42)

qm = −D
(
∂C

∂y

) ∣∣∣∣
y=0

(3.43)

= C0e
x
Lh′(η)

√
a

2Lνf
(3.44)
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Using (3.42) in (3.44) we get:

Shx =
−xDC0

√
a

2Lνf
e

x
Lh′(0)

D(Cw − C∞)

Shx =
−xC0

√
a

2Lνf
e

x
Lh′(0)

(Cw − C∞)

=
−xC0

√
a

2Lνf
e

x
Lh′(0)

(Cw − Cw − C0e
x
2L )

∴ C∞ = Cw − C0e
x
2L

=
−x
√

a
2Lνf

e
x
Lh′(0)

(−e x
2L )

= −x
√

a

2Lνf
e

x
Lh′(0)e

−x
2L

= −x
√

a

2Lνf
h′(0)e

x
2L

= −x
√

a

2Lνf
h′(0)(e

x
L )

1
2

= −x

√
ae

x
L

2Lνf
h′(0)

= −x

√
xU∞
2Lνf

h′(0)

= −

(√
xU∞
νf

)(
x

√
1

x2L
h′(0)

)

= −
√
Rex

√
x

2L
h′(0)

⇒Shx
√

1

Rex

√
2L

x
= −h′(0)

3.5 Solution Methodology

In orderoto solveothe systemoof ordinaryodifferential Eqs. (3.33)-(3.35), the shoot-

ing methodotogether with theoRunge-Katta method ofoorder four has been used.

First, Eq. (3.33) is numericallyosolved and then the calculatedoresults of f , f ′

and f ′′ are used in Eq. (3.34) and (3.35). Since the Eq. (3.33) is independent of

θ and h. Then in order to solve the Eq. (3.33) independently by using shooting
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method, the following notationsohave beenointroduced:

f = y1, f
′ = y′1 = y2, f

′′ = y′2 = y3, f
′′′ = y′3,

By using the above notations in Eq. (3.33), we get the system of equations

y′1 = y2, y1(0) = 0

y′2 = y3, y2(0) = 0

y′3 = −b1(y1y3 + 2(1− y22))− (P + (1− φ)2.5M)(1− y2), y3(0) = s

where b1 = (1− φ)2.5(1− φ+ φ
ρs
ρf

),

Theoabove initial valueoproblem willobe solvedonumerically by the RK4 method.

To getothe approximateosolution, the domainoof the problemohas beenotaken as

[0, η∞] instead of [0,∞], where η∞ is an appropriate finite positiveoreal number

with chosen initial guess s such that:

y1(η∞, s)− 1 = 0. (3.45)

To solve the above algebraic Eq. (3.45), we use theoNewton’s method which has

theofollowing iterative procedure:

s(k+1) = s(k) −
(
∂y1
∂s

)−1(
y1(η∞, s)− 1

)
. (3.46)

In order to obtain
(
∂y1
∂s

)−1
, we further introduce the following notations:

∂y1
∂s

= y4,
∂y2
∂s

= y5,
∂y3
∂s

= y6.

As a result of these new notations, the Newton’s iterative scheme gets the form:

s(k+1) = s(k) − (y4)
−1
(
y1(η∞, s)− 1

)
.
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Now differentiate the above system of three first order ODEs with respect to s,

we get another system of six ODEs. Writing all these six ODEs together, we have

the following initial value problem (IVP), which needs to be solved:

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 0,

y′3 = −b1(y1y3 + 2(1− y22))− (P + (1− φ)2.5M)(1− y2), y3(0) = s,

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = 0,

y′6 = −b1(y4y3 + y1y6 − 4y2y5) + (P + (1− φ)2.5M)y5, y6(0) = 1.

Next, we have to solve Eq. (3.34) for the known value of f . For this we use the

same procedure as considered for Eq. (3.33). For that let us denote:

θ = z1,

θ′ = z′1 = z2,

θ′′ = z′′1 = z′2,

f = d1, f
′ = d2, f

′′ = d3.

By using the above notations inoEq. (3.34), we getothe followingosystem of equa-

tions:

z′1 = z2, z1(0) = 0,

z′2 = − 1(
knf

kf
+R

)[Pr(1− φ+
φ(ρcp)s
(ρcp)f

)
(d1z2 − d2z1)

+
1

(1− φ)2.5
Ecd23

]
, z2(0) = r.

The above initialovalue problemowill beosolved againousing RK4 method. The

computational domain is truncated in the similar way as before. In the above

system of equations, the missing condition is r which needs to be refined such
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that:

z1(η∞, r)− 1 = 0. (3.47)

To solve the above algebraic Eq. (3.47), we useothe Newton’s method which has

theofollowing iterative procedure:

r(k+1) = r(k) −
(
∂z1
∂r

)−1(
z1(η∞, r)− 1

)
(3.48)

In order to obtain
(
∂z1
∂r

)−1
, we further introduce the following notations:

∂z1
∂r

= z3,
∂z2
∂r

= z4.

As a result of these new notations, the Newton’s iterative scheme gets the form:

r(k+1) = r(k) − (z3)
−1
(
z1(η∞, r)− 1

)
.

Now differentiate the above system of two first order ODEs with respect to r, we

get another system of four ODEs. Writing all these four ODEs together, we have

the following initial value problem (IVP), which needs to be solved.

z′1 = z2, z1(0) = 0,

z′2 = − 1(
knf

kf
+R

)[Pr (1− φ+
φ(ρcp)s
(ρcp)f

)
(d1z2 − d2z1)

+
1

(1− φ)2.5
Ecd23

]
, z2(0) = r,

z′3 = z4, z3(0) = 0,

z′4 = − 1(
knf

kf
+R

)[Pr (1− φ+
φ(ρcp)s
(ρcp)f

)
(d1z4 − d2z3)

+
1

(1− φ)2.5
Ecd23

]
, z4(0) = 1.

By using shooting techniques we have the solution of Eq. (3.34). Next, we have

to solve Eq. (3.35) for the know value of f . For this we use the same procedure
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as considered for Eq. (3.33) and (3.34). For that let us denoted:

h = g1,

h′ = g′1 = g2,

h′′ = g′′1 = g′2,

f = d1, f
′ = d2, f

′′ = d3.

By using the above notations inoEq. (3.35), we getothe followingosystem of equa-

tion:

g′1 = g2, g1(0) = 0,

g′2 = −Sc(d1g2 − d2g1 − γg1), g2(0) = w.

The above initialovalue problemowill beosolved again using RK4 method. The

computational domain is truncated in the similar way as before. In the above

system of equations, the missing condition is w which needs to be refined such

that:

g1(η∞, w)− 1 = 0 (3.49)

To solve the above algebraic Eq. (3.49), we useothe Newton’s method which has

theofollowing iterative procedure:

w(k+1) = w(k) −
(
∂g1
∂w

)−1(
g1(η∞, w)− 1

)
.

In order to obtain
(
∂g1
∂w

)−1
, we further introduce the following notations:

∂g1
∂w

= g3,
∂g2
∂w

= g4.

As a result of these new notations, the Newton’s iterative scheme gets the form:

w(k+1) = w(k) − (g3)
−1
(
g1(η∞, w)− 1

)
.
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Now differentiate the above system of two first order ODEs with respect to w, we

get another system of four ODEs. Writing all these four ODEs together, we have

the following initial value problem (IVP),which needs to be solved:

g′1 = g2, g1(0) = 0,

g′2 = −Sc(d1g2 − d2g1 − γg1), g2(0) = w,

g′3 = g4, g3(0) = 0,

g′4 = −Sc(d1g4 − d2g3 − γg3), g4(0) = 1.

By using shooting techniques we have the solution of Eq. (3.35).

3.5.1 Validation of Code

For validation of the numerical code Tables 3.2 and 3.3 have been presented and the

result are compared with the results of Mabood et al. [48]. In Tables 3.2oando3.3

shows, an excellentoagreement betweenothe comparedoresults and those of already

published in the literature:

1
(1−φ)2.5f

′′(0)

Cu-water Al2O3-water

φ Ref. [48] Present result Ref. [48] Present result

0 1.6872 1.6871 1.6872 1.6871

0.1 2.5794 2.5793 2.1929 2.1928

0.2 3.5901 3.5902 2.8174 2.8172

Table 3.2: Comparison of skin friction f ′′(0) with Ref. [48] when P =M =R=
Ec= 0,Pr = 6.2 and Sc= 0.68.
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−knf

kf
θ′(0)

Cu-water Al2O3-water

φ Ref. [48] Present result Ref. [48] Present result

0 1.7148 1.7199 1.7148 1.7199

0.1 2.1358 2.1418 2.0230 2.0284

0.2 2.5400 2.5464 2.3345 2.3401

Table 3.3: Comparison results of Nusselt θ′(0) with Ref. [48] when P =M =
R=Ec= 0,Pr = 6.2 and Sc= 0.68.

3.6 Result andoDiscussion

In thisosection, numericaloresults for velocity, temperatureoand concentration pro-

files areoillustrated with graphs under the influence ofodifferent parameters.

Figureo3.2 (a) studies the effectsoof volumeofraction of nanoparticles inothe pres-

ence (M = 5) and absenceo(M = 0) ofomagnetic field. It is noted that velocity of

the fluid increases gradually for both cases. This is due to the fact that nanopar-

ticle are reducing the viscous effects which correspondingly increase the velocity

profile. Similarly, Figure 3.2 (b)ofor Al2O3–water, itois observedothat in case of

hydrodynamic and hydromagnetic the velocity profile increases. From these fig-

ures,oit is clear thato an increment in the volume fractionoof nanoparticles,othe

Al2O3–wateronanofluid formed aothicker momentum boundaryolayer as compared

to Cu–wateronanofluid in these plots.

Figures 3.3 (a) exhibits the influence of solid volumeofraction ofonanoparticles

φoon temperature profile foro Cu–water nanofluids. Growing values of volume

fraction of nanoparticles enhance the thermaloconductivity of theonanofluids which

then increases the temperature profile. From Figure 3.3 (b), it canobe seenothat

the fluid temperatureoincreases for alumina water within the boundary layer region

as theovalue of the solid volume fractionoincreases from φ = 0 to φ = 0.2 (20%).

From theseofigures, itois observedothat the thermal boundaryolayer for nanopar-

ticles, namelyoCu-water, isogreater thanothat of Al2O3-water. This isobecause
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nanoparticles volumeofraction parameter (of Cu) hasohigh thermaloconductivity,

so the thickness of theothermal boundaryolayer increases.

Figure 3.4 (a) is presented to potary properties ofovolume fractionoof nanopar-

ticles together with the magneticoparameter Moon concentrationoprofile h. The

concentration profile decays as the nanoparticle volume fraction rises. Figure

3.4 (b) is sketchedoto visualizeothe variationo in theodimensionless concentration

profile due toochanges inothe volumeofraction ofonanoparticles together withothe

magnetic parameter M . The dimensionless concentration h for Al2O3-water also

demonstrates a declining behaviour. These figures, delineated to show that the

concentration distribution undergoes a decrement if there is an enhancement in

the volume fraction φ.

Figures 3.5 (a) is delineated to showsothe impact of permeabilityoparameter on

fluid velocityofor Cu-wateronanofluid. Fluid velocity is enhanced marginally with

an increment in theovalues of both the permeabilityoparameter P and φofor Cu-

water. Figures 3.5 (b) depicts that an increases in the permeabilityoparameter

P fluidovelocity increases effectively for Al2O3–wateronanofluid. Physically, an

increaseoin permeabilityo parameter causes asoincrease in the flow rate, so as flow

rate increases theovelocity ofothe fluid also increases.

Figures 3.6 (a) displays the influence of theovolume fractionoφ and permeability

parameters P on the dimensionless temperature θ for Cu-water. When the poros-

ity enhances significantly the thermaloboundary layer is reduced. Itois clearly

observedothat the temperature profile enhances marginally by enhancement in

the volume fraction for magnified porosity. If we enhance the values of the per-

meability parameter, the temperature distribution is also enhanced. Figure 3.6

(b) depicts that the temperature profile is increased for the larger valuesoof the

permeability parameteroP and theovolume fractionoφ for Al2O3–water nanofluid.

An increase in the permeability material correspond to large void section thus

increases in the temperature profile. Physically, in these figuresothe temperature

profileoenhances effective if withoan increase in the φ.

Figures 3.7 (a) illustrates the influence of the higher estimation of nanoparticles
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on fluid temperature θ for Cu-water nanofluid with or without radiation. The di-

mensionless temperature fieldoθ is increasedoas theothermal radiationoparameter

Rois increased.oIt strengthensothe factothat moreoheat isoproduced due inothe

radiationoprocess. Figures 3.7 (b) depicts theovariation inothe dimensionless tem-

perature θodue toothe volume fraction φ for Al2O3-water nanofluid with or with-

out radiation. The dimensionless temperature is enhanced as volume fraction φ

is increased gradually. Physically, the thermal radiation effect temperature distri-

bution of the nanofluid. As the thermal radiation boosts the thermal diffusion.

Hence, the temperature increases asothe thermaloradiation rises foroany form of

nanoparticles.

Figures 3.8 (a) is framed to spectacles the effect ofoEckert numberoon temper-

atureoprofile θofor Cu-wateronanofluid when fluctuating the volume fraction of

the nanoparticles. When theovalue of the Eckert number is enhanced, theofluid

realm is permited to storeothe energy. Asoa consequence of dissipation due to frac-

tional heating, heat is produced. The effect ofothe viscousodissipation parameter

i.e. theoEckert numberoEc on theodimensionless temperatureoprofile θ for Al2O3-

water nanofluid is visualized in Figures 3.8 (b). It isoanalyzed thatoan increaseoin

Ec causesoan increaseoin θoand theoboundary layerothickness. From this figure,

we examine that for the higher estimation value of the thermal boundary thickness

is enhanced with increasing values of φ and it will eventually magnify the tem-

perature. In addition to that, an increment can be seen in the thermal boundary

layer thickness.

Figures 3.9 (a) elucidatesothe effect ofothe chemical reaction parameteroon con-

centration profile for Cu-watero nanofluid. It isoclear thatoas the chemical reac-

tion parameter increases,othe concentration profile drops significantly. Figures 3.9

(b) illustrates the effect ofothe chemicaloreaction parameteroon theoconcentration

profileofor Al2O3-water nanofluid. Graphs ofothis figureoindicate that concen-

tration profile isoreduced as chemical reaction parameterois hiked. However, in-

creasingothe volume fractionoof nanoparticlesohas littleoeffect onodimensionless

concentration. Also, the concentrationo boundary layerothickness isodepressed.
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Figure 3.2: Impact of φ and M on the dimensionless velocity f ′.
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Figure 3.5: Impact of φ and P on the dimensionless velocity f ′.
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Figure 3.6: Impact of φ and P on the dimensionless temperature θ.
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Figure 3.7: Impact of φ and R on the dimensionless temperature θ.
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Figure 3.8: Impact of φ and Ec on the dimensionless temperature θ.



Viscous dissipation and chemical reaction for MHD... 61

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 0.0
 = 0.1
 = 0.2

2.32 2.33 2.34 2.35

0.07
0.08
0.09
0.1

0.11

Sc = 0.68,Pr = 6.2
M = Ec = R = 1,P = 10

Solid Lines  = 0
Dashed Lines  = 0.5

(a)Cu-Water

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 = 0.0
 = 0.1
 = 0.3

0.2865 0.287 0.2875
0.76

0.78

0.8

0.82

Sc = 0.68,Pr = 6.2
M = Ec = R = 1,P = 10

Solid Lines  = 0
Dashed Lines  = 0.5

(b)Al2O3-Water

Figure 3.9: Impact of φ and γ on the dimensionless temperature θ.



Chapter 4

MHD Stagnation Point Flow of

Radiative Nanofluid with Higher

Order Chemical Reaction and

Joule Heating

Inothis chapter we extendothe model of Mabood et al. [48] by considering the effect

of Joule heating, inclined magneticofield and nth order chemicaloreaction. Heat

andomass transferoare analyzed for the steady and incompressible flow by taking

into account the effect of viscous dissipations, nth order chemical reaction and

Joule heating in a porous medium. Nonlinear PDEsoare converted into a systemoof

ODEs by using an appropriate similarity transformation. We have achieved the

numerical solutionoof theosystem ofoODEs by using the technique namely the

shooting techniqueoalong withoRunge-Kutta methodoof order four. Theoresults

for different governing parameters for velocity, energy and concentration profiles

are deliberated through graphical and tabular form.

62
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4.1 Problem Formulatiuon

This chapter aims to analyse the 2D, incompressible nanofluid flow in porous

medium. The flow occupied the space y > 0. Magnetic field of strength B is

applied with an inclination angle α with the horizontal axis. Furthermore x-axis

is in the direction of flow and y-axis is normal to it. Energy transport analysis

is also carried out in the presence of thermal radiation, viscous dissipation and

Joule heating. Moreover, the concentration of flow is discussed with the help

of concentration equation under the effect of nth order chemical reaction. To

enhance the heat transfer characteristics of base fluid water, we have used a well

known nanofluid model that’s “Tiwari Das” model [64]. In this regime 2-different

nanoparticales are choosen namely Cu and Al2O3. The thermo-physical properties

of the fluid with nanoparticles are given in Table 3.1.

Figure 4.1: Geometry of physical model.

Under the above constraint the related equations are given as:

∂u

∂x
+
∂v

∂y
= 0, (4.1)



MHD stagnation point flow of radiative nanofluid... 64

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2

ρnf
sin2 α(U∞ − u),

(4.2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρcp)nf

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

+
σB2

(ρcp)nf
sin2 α(u− U∞)2,

(4.3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−K(C − C∞)n. (4.4)

The corresponding conditions at the boundary are

u = v = 0, T = Tw = T∞ + T0e
x
2L ,

C = Cw = C∞ + C0e
x
2L ,

 at y = 0,

u = U∞ = ae
x
L , T = T∞, C = C∞, as y →∞.

 (4.5)

The Rosseland approximation has been considered for the radiation. For smaller

value of temperature difference, the temperature T 4 might be expanded about

T∞ using Taylor series and ignoring the higher order terms, the formulae for the

radiative heat flux qr is stated below.

∂qr
∂y

=
−16σ∗T 3

∞
3k∗

∂2T

∂y2
. (4.6)

4.2 Similarity Transformation

In this section similar to Chapter 3, we transform the governing system of PDEs

along with boundary condition into a dimensionless form by using appropriate

similarity transformations. The similarity transformation used are as follows [48]:

η = y

√
a

2Lνf
e

x
2L , ψ =

√
2aLνfe

x
2Lf(η), θ(η) =

T − T∞
Tw − T∞

, h(η) =
C − C∞
Cw − C∞

.

The detailed procedure for the verification of the continuity Eq. (4.1) has been

discussed in Chapter 3.

Now Eq. (4.2) will be converted into the dimensionless form. The left hand side
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of Eq. (4.2) can be written as:

u
∂u

∂x
+ v

∂u

∂y
=
a2

2L

(
ηf ′′(η)f ′(η) + 2f ′2(η)

)
− a2

2L
e

2x
L

(
ηf ′′(η)f ′(η) + f ′′(η)f(η)

)
=
a2

2L
e

2x
L

(
2f ′2(η)− f ′′(η)f(η)

)
.

Furthermore, the first, second and third expressions on the right hand side of

Eq. (4.2) have been transformed into the dimensionless form as stated below:

U∞
dU∞
dx

=
a2

L
e

2x
L (4.7)

νnf
∂2u

∂y2
=
µnf
ρnf

(
∂2u

∂y2

)
=

a2e
2x
L

2L(1− φ)2.5(1− φ+ φρs
ρf

)
f ′′′(η)

νnf
k

(U∞ − u) =
µf

k0e
− x

L (1− φ)2.5
(

(1− φ)ρf + φρs

)(ae x
L − ae

x
Lf ′(η)

)

=
νfρf

ρfk0(1− φ)2.5
(

1− φ+ φρs
ρf

)ae x
L e

x
L

(
1− f ′(η)

)

=
aνfe

2x
L

k0(1− φ)2.5
(

1− φ+ φ ρs
ρf

)(1− f ′(η)

)
.

On the similar note, conversion of the remaining terms of the right hand side of

Eq. (4.2) into the dimensionless form is stated below:

σB2 sin2 α

ρnf
(U∞ − u) =

σ(B0e
x
2L )2 sin2 α

(1− φ)ρf + φρs

(
ae

x
L − ae

x
Lf ′(η)

)
=
σ(B0e

x
2L )2 sin2 α

(1− φ)ρf + φρs
ae

x
L

(
1− f ′(η)

)
=

σB2
0ae

2x
L sin2 α

ρf

(
1− φ+ φρs

ρf

)(1− f ′(η)

)
. (4.8)
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Using (4.7) - (4.8) in the right side of (4.2), we get

U∞
dU∞
dx

+ νnf
∂2u

∂y2
+
νnf
k

(U∞ − u) +
σB2 sin2 α

ρnf
(U∞ − u)

=
a2e

2x
L

L
+

a2e
2x
L f ′′′(η)

2L(1− φ)2.5
(

1− φ+ φρs
ρf

)
+

aνfe
2x
L

k0(1− φ)2.5
(

1− φ+ φ ρs
ρf

)
+

σB2
0ae

2x
L sin2 α

ρf

(
1− φ+ φρs

ρf

)(1− f ′(η)

)
. (4.9)

Hence the dimensionless form of (4.2) becomes

a2e
2x
L

2L

(
2f ′2(η)− f ′′(η)f(η)

)
=
a2e

2x
L

2L

[
2 +

1

(1− φ)2.5(1− φ+ φρs
ρf

)
f ′′′(η)

+
2Lνf

ak0(1− φ)2.5(1− φ+ φ ρs
ρf

)

(
1− f ′(η)

)
+

2LσB2
0 sin2 α

aρf (1− φ+ φρs
ρf

)

(
1− f ′(η)

)]
⇒ 2f ′2(η)− f ′′(η)f(η) = 2 +

f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ak0(1− φ)2.5(1− φ+ φ ρs
ρf

)
+

2LσB2
0 sin2 α

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ −2 + 2f ′2(η)− f ′′(η)f(η) =

f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)

+

(
2Lνf

ak0(1− φ)2.5(1− φ+ φ ρs
ρf

)
+

2LσB2
0 sin2 α

aρf (1− φ+ φρs
ρf

)

)(
1− f ′(η)

)
⇒ f ′′′(η)

(1− φ)2.5(1− φ+ φρs
ρf

)
+ 2

(
1− f ′2(η)

)
+ f(η)f ′′(η)[

1

(1− φ)2.5
(

1− φ+ φρs
ρf

)(2Lνf
ak0

+
2LσB2

0 sin2 α

aρf
(1− φ)2.5

)(
1− f ′(η)

)]
= 0.

(4.10)

Next, we include the procedure for the conversion of (4.3) into the dimensionless

form. The left hand side of Eq. (4.3) into the dimensionless form is similar to that
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discussed in Chapter 3.

u
∂T

∂x
+ v

∂T

∂y
=
aT0e

3x
2L

2L

(
f ′(η)θ(η) + ηf ′(η)θ′(η)

)
− aT0e

3x
2L

2L

(
ηf ′(η)θ′(η) + f(η)θ′(η)

)
=
aT0e

3x
2L

2L
f ′(η)

(
θ(η)− ηθ′(η)

)
.

Furthermore, the first, second and third expressions on the right hand side of

Eq. (4.3) have been transformed into the dimensionless form as stated below:

αnf
∂2T

∂y2
=

knf
(ρcp)nf

aT0
2νfL

e
3x
2L θ′′(η). (4.11)

1

(ρcp)nf

∂qr
∂y

=
1

(ρcp)nf

−16σ∗T 3
∞

3k∗
aT0e

3x
2L

2νfL
θ′′(η)

=
−16σ∗T 3

∞
3k∗(ρcp)nf

aT0e
3x
2L

2Lνf
θ′′(η).

µnf
(ρcp)nf

(
∂u

∂y

)2

=
µnf

(ρcp)nf

(
a

√
a

2Lνf
e

3x
2Lf ′′(η)

)2

=
µnf

(ρcp)nf

a3

2Lνf

(
e

3x
2L

)2
f ′′

2
(η).

On the similar note, conversion of the remaining terms of the right hand side of

Eq. (4.3) into the dimensionless form has been stated below:

σB2 sin2 α

(ρcp)nf
(u− U∞)2 =

σ(B0e
x
2L )2 sin2 α

(ρcp)nf
(ae

x
Lf ′(η)− ae

x
L )2

=
σ(B0e

x
2L )2 sin2 α

(ρcp)nf
(ae

x
L (f ′(η)− 1))2. (4.12)

Using (4.11) - (4.12), the dimensionless form of right side of (4.3) is as follows:

αnf
∂2T

∂y2
− 1

(ρcp)

∂qr
∂y

+
µnf

(ρcp)nf

(
∂u

∂y

)2

+
σB2 sin2 α

(ρcp)nf
(u− U∞)2

=
KnfT0ae

3x
2L

2νfL(ρcp)nf
θ′′(η) +

16σ∗T 3
∞aT0e

3x
2L

6k∗νfL(ρcp)nf
θ′′(η) +

a3
(
e

3x
2L

)2
µnf

2Lνf (ρcp)nf
f ′′

2
(η)

+
σ(B0e

x
2L )2 sin2 α

(ρcp)nf
(ae

x
L (f ′(η)− 1))2
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=
KnfT0ae

3x
2L

2νfL(ρcp)nf
θ′′(η) +

16σ∗T 3
∞aT0e

3x
2L

6k∗νfL(ρcp)nf
θ′′(η) +

a3
(
e

3x
2L

)2
µnf

2Lνf (ρcp)nf
f ′′

2
(η)

+
σ(B0e

x
2L )2 sin2 α

(ρcp)nf
(ae

x
L (f ′(η)− 1))2

=
aT0e

3x
2L

2L

[
knf

νf (ρcp)nf
θ′′(η)

16σ∗T 3
∞

3k∗νf (ρcp)nf
θ′′(η)

+
µnf

(
a2e

3x
2L

)
νfT0(ρcp)nf

f ′′
2
(η) +

σ(B0e
x
2L )2ae

2x
L 2L

T0e
3x
2L (ρcp)nf

(f ′(η)− 1)2
]

=
aT0e

3x
2L

2L

[(
knf
kf

(ρcp)f
ρcp)nf

kf
ρcp)f

1

νf

)
θ′′(η) +

(
(ρcp)f
ρcp)nf

kf
(ρcp)fνf

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+

µnf
µf

(ρcp)f
ρcp)nf

µf
(ρcp)f

(
a2e

3x
2L

)
T0νf

 f ′′
2
(η)

+

(
(ρcp)f
(ρcp)nf

1

(ρcp)f

2Lσ(B0e
x
2L )2U2

∞ sin2 α

T0e
3x
2L

)
(f ′(η)− 1)2

]

=
aT0e

3x
2L

2L

[ kf
knf

1(
1− φ+ φ(ρcp)s

(ρcp)f

) αf
νf

 θ′′(η)

(
∵ αf =

kf
(ρcp)f

)

+

 1(
1− φ+ φ(ρcp)s

(ρcp)f

) αf
νf

16σ∗T 3
∞

3k∗kf

 θ′′(η)

+

 1

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

) µf
ρf

1

νf

(
a2e

3x
2L

)
T0(cp)f

 f ′′
2
(η)

+

 1(
1− φ+ φ(ρcp)s

(ρcp)f

) 1

(ρcp)f

2Lσ(B0e
x
2L )2(U∞)2 sin2 α

aT0e
3x
2L

 (f ′(η)− 1)2
]

=
aT0e

3x
2L

2L

[(
knf
kf

1(
1− φ+ φ(ρcp)s

(ρcp)f

) 1

Pr

)
θ′′(η)

(
∵ Pr =

νf
αf

)

+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) 1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+

(
1

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

) (ae
x
L )2

(Tw − T∞)(cp)f

)
f ′′

2
(η)

+

 1(
1− φ+ φ(ρcp)s

(ρcp)f

) 1

(ρcp)f

2Lσe
x
2L (B0e

x
2L )2(U∞)2 sin2 α

a(Tw − T∞)e
3x
2L

 (f ′(η)− 1)2
]
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Therefore the dimensionless form of (4.3) becomes:

aT0e
3x
2L

2L

(
f ′(η)θ(η)− f(η)θ′(η)

)
=
aT0e

3x
2L

2L

[(
knf
kf

1(
1− φ+ φ(ρcp)s

(ρcp)f

) 1

Pr

)
θ′′(η)

+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) 1

Pr

16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
(U∞)2f ′′2(η)

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

)
(Tw − T∞)(cp)f

+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) 1

ρf (cp)f

2Lσe
x
2L (B0e

x
2L )2(U∞)2 sin2 α

a(Tw − T∞)e
3x
2L

)
(f ′(η)− 1)2

]

⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

[(
knf
kf

1(
1− φ+ φ(ρcp)s

(ρcp)f

))θ′′(η)

+

(
1(

1− φ+ φ(ρcp)s
(ρcp)f

) 16σ∗T 3
∞

3k∗kf

)
θ′′(η)

+
Pr

(1− φ)2.5
(

1− φ+ φ(ρcp)s
(ρcp)f

) (U∞)2f ′′2(η)

(Tw − T∞)(cp)f

+

(
2Lσ(B0)

2 sin2 α

a(Tw − T∞)

1

(1− φ+ φ(ρcp)s
(ρcp)f

)

Pr(U∞)2

(ρcp)f

)
(f ′(η)− 1)2

]

⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1(
1− φ+ φ(ρcp)s

(ρcp)f

)[(knf
kf

)
θ′′(η)

+

(
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

+
2Lσ(B0)

2 sin2 α

aρf
Pr

(U∞)2

(Tw − T∞)(cp)f
(f ′(η)− 1)2

]

⇒
(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

1(
1− φ+ φ(ρcp)s

(ρcp)f

)[(knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)
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+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

+
2Lσ(B0)

2 sin2 α

aρf
Pr

(U∞)2

(Tw − T∞)(cp)f
(f ′(η)− 1)2

]
.

⇒
(

1− φ+
φ(ρcp)s
(ρcp)f

)(
f ′(η)θ(η)− f(η)θ′(η)

)
Pr =

[(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η)

+
1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

+
2Lσ(B0)

2 sin2 α

aρf
Pr

(U∞)2

(Tw − T∞)(cp)f
(f ′(η)− 1)2

]
.

⇒
(
knf
kf

+
16σ∗T 3

∞
3k∗kf

)
θ′′(η) + Pr

(
1− φ+

φ(ρcp)s
(ρcp)f

)(
− f ′(η)θ(η) + f(η)θ′(η)

)
+

1

(1− φ)2.5
Pr

(U∞)2

(Tw − T∞)(cp)f
f ′′

2
(η)

+
2Lσ(B0)

2 sin2 α

aρf
Pr

(U∞)2

(Tw − T∞)(cp)f
(f ′(η)− 1)2

]
.

Next, we include the procedure for the conversion of (4.4) into the dimensionless

form. The left hand side of Eq. (4.4) into the dimensionless form is similar to that

discussed in Chapter 3.

u
∂C

∂x
+ v

∂C

∂y
= C0

ae
3x
2L

2L
(h(η)f ′(η) + ηh′(η)f ′(η)− ηf ′(η)h′(η)− f(η)h′(η))

=
ae

3x
2L

2L
C0(f

′(η)h(η)− h′(η)f(η)). (4.13)

To convert the right side of (4.4) into the dimensionless form, we proceed as follows:

∂2C

∂y2
=

∂

∂y

(√
a

2Lνf
C0e

x
Lh′(η)

)
=

(
C0e

x
L

√
a

2Lνf

∂h′(η)

∂η

∂η

∂y

)
= C0e

x
L

√
a

2Lνf
h′′(η)

√
a

2Lνf
e

x
2L

= C0e
x
L e

x
2L

a

2Lνf
h′′(η)

= C0e
3x
2L

a

2Lνf
h′′(η)



MHD stagnation point flow of radiative nanofluid... 71

hn(η) =

(
C − C∞
Cw − C∞

)n
⇒ (C − C∞)n = hn(η)(Cw − C∞)n

⇒ K(C − C∞)n = Khn(η)(Cw − C∞)n

⇒ K(C − C∞)n = K0e
x
Lhn(η)(Cw − C∞)n

Using (4.14) and (4.14) in the right side of (4.4), we get

D
∂2C

∂y2
−K(C − C∞) = DC0e

3x
2L

a

2Lνf
h′′(η)−K0e

x
L (Cw − C∞)nhn(η). (4.14)

Hence the dimensionless form of (4.4) becomes:

C0
ae

3x
2L

2L
(f ′(η)h(η)− h′(η)f(η)) = DC0e

3x
2L

a

2Lvf
h′′(η)−K0e

x
L (Cw − C∞)nhn(η)

⇒C0
ae

3x
2L

2L
(f ′(η)h(η)− h′(η)f(η)) = C0e

3x
2L

(
Dah′′(η)

2Lνf
− K0e

x
L (Cw − C∞)n

e
3x
2LC0

hn(η)

)
⇒ a

2L
(f ′(η)h(η)− h′(η)f(η)) =

a

2L

(
D

νf
h′′(η)− 2LK0e

x
L (Cw − C∞)n

ae
3x
2LC0

hn(η)

)
⇒(f ′(η)h(η)− h′(η)f(η)) =

D

νf
h′′(η)− 2LK0(Cw − C∞)n

C0ae
3x
2L e

−x
L

hn(η)

⇒νf
D

(f ′(η)h(η)− h′(η)f(η)) = h′′(η)− νf
D

2LK0(Cw − C∞)n

a(Cw − C∞)
hn(η)

⇒νf
D

(f ′(η)h(η)− h′(η)f(η)) = h′′(η)− νf
D

2LK0(Cw − C∞)n−1

a
hn(η)

⇒
(
νf
D

(f ′(η)h(η)− h′(η)f(η)) +
νf
D

2LK0(Cw − C∞)n−1

a
hn(η)

)
= h′′(η)

⇒h′′(η) +
νf
D

(f ′(η)h(η)− h′(η)f(η))− νf
D

2LK0(Cw − C∞)n−1

a
hn(η) = 0.

Finally, the ODEs describing the governing flow problem can be re-collected in

the following system:

1

(1− φ)2.5
(

1− φ+ φ ρs
ρf

)f ′′′ + ff ′′ + 2(1− f ′2)

+
1

(1− φ)2.5
(

1− φ+ φ ρs
ρf

)(P + (1− φ)2.5M sin2 α)(1− f ′) = 0, (4.15)
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(
knf
kf

+R

)
θ′′ + Pr

(
1− φ+

φ(ρcp)s
(ρcP )f

)
(fθ′ − f ′θ) +

1

(1− φ)2.5
Ec f ′′

2

+ sin2 α Pr M Ec (f ′ − 1)2 = 0, (4.16)

h′′ + Sc(fh′ − f ′h− γnhn) = 0. (4.17)

The associated boundary conditions (4.5) get the form:

f = 0, f ′ = 0, θ = 1, h = 1, at η = 0,

f ′ → 1, θ → 0, h→ 0, as η →∞.

 (4.18)

Different parameters used in the above equations have the following formulations:

M =
2σB2

0L

aρf
, Pr =

νf
αf
, Sc =

νf
D
,P =

2Lνf
ak0

,

R =
16σ∗T 3

∞
3k∗kf

, γn =
2LK0(Cw − C∞)n−1

a
,Ec =

U2
∞

(cp)f (Tw − T∞)
. (4.19)

4.3 Physical Quantities of Interest

The detailed procedure of the dimensionless form of skin-friction coefficient, Nus-

selt number and Sherwood number have been discussed in Chapter 3.

The skin-friction coefficient, Nusselt number and Sherwood number in dimension-

less form are given by: √
Rex/2√
x/L

Cfx =
1

(1− φ)2.5
f ′′(0),√

2L

x

1√
Rex

Nux = −knf
kf

θ′(0),

Shx

√
1

Rex

√
2L

x
= −h′(0).


(4.20)

4.4 Solution Methodology

In order to solve the system of ordinary differential Eqs. (4.15)-(4.17), the shooting

method together with the Runge-Katta method of order four has been used. First,
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Eq. (4.15) is numerically solved and then the calculated results of f , f ′ and f ′′ are

used in Eq. (4.16) and (4.17). Since the Eq. (4.15) is independent of θ and h, the

Eq. (4.15) can be solved independently by using shooting method, the following

notations have been introduced:

f = y1, f
′ = y′1 = y2, f

′′ = y′2 = y3, f
′′′ = y′3.

By using the above notations in Eq. (4.15), we get the system of equations

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 0,

y′3 = −b1(y1y3 + 2(1− y22))− (P + (1− φ)2.5M sin2 α)(1− y2), y3(0) = L.

where b1 = (1− φ)2.5(1− φ+ φ
ρs
ρf

).

The above initial value problem will be solved numerically by the RK4 method.

To get the approximate solution, the domain of the problem has been taken as

[0, η∞] instead of [0,∞], where η∞ is an appropriate finite positive real number

in such a way that the variation in the solution for η > η∞ is ignorable. Chosen

initial guess L such that:

y1(η∞, L)− 1 = 0. (4.21)

To solve the above algebraic Eq. (4.21), we use the Newton’s method which has

the following iterative procedure:

L(k+1) = L(k) −
(
∂y1
∂L

)−1(
y1(η∞, L)− 1

)
. (4.22)

In order to obtain
(
∂y1
∂L

)−1
, we further introduce the following notations:

∂y1
∂L

= y4,
∂y2
∂L

= y5,
∂y3
∂L

= y6.
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As a result of these new notations, the Newton’s iterative scheme gets the form:

L(k+1) = L(k) − (y4)
−1
(
y1(η∞, L)− 1

)
.

In order to get the value of y4, differentiate the above system of three first order

ODEs with respect to L, we get another system of six ODEs. Writing all these six

ODEs together, we have the following initial value problem (IVP), which needs to

be solved:

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 0,

y′3 = −b1(y1y3 + 2(1− y22))− (P + (1− φ)2.5M sin2 α)(1− y2), y3(0) = L,

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = 0,

y′6 = −b1(y4y3 + y1y6 − 4y2y5) + (P + (1− φ)2.5M sin2 α)y5, y6(0) = 1.

Next, we have to solve Eq. (4.16) for the known value of f . For this we use the

same procedure as considered for Eq (4.15). For that let us denote:

θ = z1,

θ′ = z′1 = z2,

θ′′ = z′′1 = z′2,

f = d1, f
′ = d2, f

′′ = d3.

By using the above notations in Eq. (4.16), we get the following system of equa-

tions:

z′1 = z2, z1(0) = 0,

z′2 = − 1(
knf

kf
+R

)[Pr(1− φ+
φ(ρcp)s
(ρcp)f

)
(d1z2 − d2z1)

+
1

(1− φ)2.5
Ecd23 + sin2 αPrMEc(d2 − 1)2

]
, z2(0) = m.



MHD stagnation point flow of radiative nanofluid... 75

The above initial value problem will be solved again using RK4 method. The

computational domain is truncated in the similar way as before. In the above

system of equations, the missing condition is m which needs to be refined such

that:

z1(η∞,m)− 1 = 0. (4.23)

To solve the above algebraic Eq. (4.23), we use the Newton’s method which has

the following iterative procedure:

m(k+1) = m(k) −
(
∂z1
∂m

)−1(
z1(η∞,m)− 1

)
(4.24)

In order to obtain
(
∂z1
∂m

)−1
, we further introduce the following notations:

∂z1
∂m

= z3,
∂z2
∂m

= z4.

As a result of these new notations, the Newton’s iterative scheme gets the form:

m(k+1) = m(k) − (z3)
−1
(
z1(η∞,m)− 1

)
.

Now differentiate the above system of two first order ODEs with respect to m, we

get another system of four ODEs. Writing all these four ODEs together, we have

the following initial value problem (IVP), which needs to be solved.

z′1 = z2, z1(0) = 0,

z′2 = − 1(
knf

kf
+R

)[Pr (1− φ+
φ(ρcp)s
(ρcp)f

)
(d1z2 − d2z1)

+
1

(1− φ)2.5
Ecd23 + sin2 αPrMEc(d2 − 1)2

]
, z2(0) = m,

z′3 = z4, z3(0) = 0,

z′4 = − 1(
knf

kf
+R

) [Pr (1− φ+
φ(ρcp)s
(ρcp)f

)
(d1z4 − d2z3)

]
, z4(0) = 1.
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By using shooting techniques we have the solution of Eq. (4.16). Next, we have

to solve Eq. (4.17) for the know value of f . For this we use the same procedure

as considered for Eq (3.33) and (4.16). For that let us denoted:

h = g1,

h′ = g′1 = g2,

h′′ = g′′1 = g′2,

f = d1, f
′ = d2, f

′′ = d3.

By using the above notations in Eq. (4.17), we get the following system of equation:

g′1 = g2, g1(0) = 0,

g′2 = −Sc(d1g2 − d2g1 − γngn1 ), g2(0) = q.

The above initial value problem will be solved again using RK4 method. The

computational domain is truncated in the similar way as before. In the above

system of equations, the missing condition is q which needs to be refined such

that:

g1(η∞, q)− 1 = 0 (4.25)

To solve the above algebraic Eq. (4.25), we use the Newton’s method which has

the following iterative procedure:

q(k+1) = q(k) −
(
∂g1
∂q

)−1(
g1(η∞, q)− 1

)
.

In order to obtain
(
∂g1
∂q

)−1
, we further introduce the following notations:

∂g1
∂q

= g3,
∂g2
∂q

= g4.
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As a result of these new notations, the Newton’s iterative scheme gets the form:

q(k+1) = q(k) − (g3)
−1
(
g1(η∞, q)− 1

)
.

Now differentiate the above system of two first order ODEs with respect to q, we

get another system of four ODEs. Writing all these four ODEs together, we have

the following initial value problem (IVP),which needs to be solved:

g′1 = g2, g1(0) = 0,

g′2 = −Sc(d1g2 − d2g1 − γngn1 ), g2(0) = q,

g′3 = g4, g3(0) = 0,

g′4 = −Sc(d1g4 − d2g3 − γnngn−11 g3), g4(0) = 1.

By using shooting techniques we have the solution of Eq. (4.17).

4.5 Result and Discussion

In this section, the numerical results of skin-friction coefficient, Nusselt and Sher-

wood numbers are illustrated by tables and graphs to show the behaviour of the

velocity, temperature and concentration by assuming various values of different

physical parameters of interest.

In Tables 4.1-4.3 the numerical analysis of various physical parameters on Cfx,

Nux and Shx under discussion is displayed. Tables 4.1-4.3 show that by increas-

ing the values of φ skin friction, Nusselt number and Sherwood number is also

increasing. For the larger permeability parameter P , the skin friction and Sher-

wood number are enhanced whereas the Nusselt number experiences an opposite

behaviour. An enhancement in the skin friction, Nusselt and Sherwood numbers

has been seen as M , R and γ assume the larger values. The higher estimation of

Eckert number Ec de-escalate the Sherwood number.
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1
(1−φ)2.5f

′′(0)

φ P M R Ec γ α n Cu-water Al2O3-water

0.0 0.5 2 1 0.5 0.1 π/8 1 1.9071 1.9071

0.1 2.8066 2.4563

0.2 3.8626 3.1575

0.1 0 0.5 1 0.5 0.1 π/4 2 2.6414 2.2657

2 3.2181 2.9177

5 3.9281 3.6863

0.1 0.5 1 1 0.5 0.1 π/4 1 2.8541 2.5104

2 2.9656 2.6365

3 3.0731 2.7570

0.2 5 0.2 0.2 0.5 0.1 π/4 1 5.3197 4.8336

1.5 5.3197 4.8336

2.5 5.3197 4.8336

0.2 0.5 1 1 0.5 0.0 π/4 2 3.9091 3.2141

0.1 3.9091 3.2141

0.2 3.9091 3.2141

0.1 0.5 1 1 0.5 0.1 π/2 2 2.9658 2.6371

π/4 2.8543 2.5112

π/6 2.7969 2.4458

0.2 0.5 1 1 0.5 0.1 π/4 1 3.9093 3.2157

2 3.9093 3.2157

3 3.9093 3.2157

Table 4.1: Numerical results of skin-friction coefficient f ′′(0) when Pr = 6.2
and Sc= 0.68.
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−knf

kf
θ′(0)

φ P M R Ec γ α n Cu-water Al2O3-water

0.0 0.5 2 1 0.5 0.1 π/8 1 2.6968 2.6968

0.1 3.2774 3.2611

0.2 3.8412 3.8445

0.1 0 0.5 1 0.5 0.1 π/4 2 3.2294 3.2044

2 3.1901 3.1720

5 3.1205 3.1053

0.1 0.5 1 1 0.5 0.1 π/4 1 3.5475 3.5594

2 4.1741 4.2441

3 4.7683 4.8848

0.2 10 1 1 0.5 0.1 π/4 1 2.5430 2.5292

2 4.0249 4.1612

3 5.6281 5.8017

0.2 5 0.2 0.2 0.5 0.1 π/4 1 2.0934 2.0997

1.5 -0.1039 0.1945

2.5 -2.3014 -1.7088

0.2 0.5 1 1 0.5 0.0 π/4 2 4.1929 4.2517

0.1 4.1929 4.2517

0.2 4.1929 4.2517

0.2 0.5 1 1 0.5 0.1 π/2 2 4.1752 4.2454

π/4 3.5473 3.5598

π/6 3.2198 3.1981

0.2 0.5 1 1 0.5 0.1 π/4 1 4.1958 4.2558

2 4.1958 4.2558

3 4.1958 4.2558

Table 4.2: Numerical results of Nusselt number −θ′(0) when

Pr = 6.2 and Sc= 0.68.
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−h′(0)

φ P M R Ec γ α n Cu-water Al2O3-water

0.0 0.5 2 1 0.5 0.1 π/8 1 0.7923 0.7923

0.1 0.8113 0.8113

0.2 0.7844 0.7844

0.1 0 0.5 1 0.5 0.1 π/4 2 0.9398 0.9170

2 0.9625 0.9477

5 0.9850 0.9755

0.1 0.5 1 1 0.5 0.1 π/4 1 0.8242 0.8047

2 0.8288 0.8108

3 0.8331 0.8164

0.2 5 0.2 0.2 0.5 0.1 π/4 1 0.7155 0.7014

1.5 0.7155 0.7014

2.5 0.7155 0.7014

0.2 0.2 1 1 0.5 0.0 π/4 2 0.6958 0.6663

0.1 0.7227 0.6943

0.2 0.7490 0.7215

0.1 0.5 1 1 0.5 0.1 π/2 2 0.8479 0.8312

π/4 0.8436 0.8255

π/6 0.8413 0.8225

0.2 0.5 1 1 0.5 0.1 π/4 1 0.8561 0.8288

2 0.8466 0.8192

3 0.8416 0.8140

Table 4.3: Numerical results of Sherwood number−h′(0) when Pr = 6.2 and
Sc= 0.68.

For the higher estimation of inclination angle α, the skin-friction coefficient and the

Sherwood number de-escalate whereas the Nusselt number increases marginally.

Due to increasing higher order chemical reaction parameter n, the values of skin

friction, Sherwood number are same and Nusselt number values decrease.
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This section presents the graphical view of different parameters obtained while

non-dimensionalizing the above physical model.

Figures 4.2-4.4 are sketched to present the influence of the volume fraction φ on ve-

locity, temperature and concentration profiles. The nanoparticle volume fraction

parameter φ is varied from 0.0 (0%) to 0.2 (20%). The nanoparticles used in the

study are copper (Cu) and alumina (Al2O3). Figure 4.2 shows the impact of the

volume fraction on the fluid velocity. In this figure, we observe that the velocity

increases with an increase in the volume fraction of nanoparticles for Cu-water

while the effect of “nanoparticle volume fraction” φ parameter for Al2O3–water on

the velocity profile in the boundary layer. It is observed that the velocity profile

is zero at the surface, increases and tends to unity as the distance increases from

the boundary. Increasing values of the nanoparticle volume fraction parameter is

to decrease the velocity profile for Al2O3–water.

Figure 4.3 elucidates the effect of the volume fraction on temperature profile.

Analysis of the graph shows that the increasing values of the nanoparticles vol-

ume fraction parameter φ is to enhance the temperature profile and tends asymp-

totically to zero as the distance increases from the boundary for both Cu-water

and Al2O3–water. Also the thermal boundary layer for nanoparticles, namely Cu-

water, is greater than that of pure water. This is because nanoparticles volume

fraction parameter has high thermal conductivity, so the thickness of the thermal

boundary layer increases.

Figure 4.4 delineates the impact of the volume fraction φ on the concentration

profile h. A decreasing behaviour is found in the dimensionless concentration h

for Cu-water and increase marginally for Al2O3–water for the dimensionless con-

centration h.

Figures 4.5-4.7 present the impact of the magnetic parameter on the velocity,

temperature and concentration profiles. Figure 4.5 shows the effect of magnetic

parameter M , that employs viscous drag force on the flow which results in the

deceleration of momentum, therefore with the increase of M the velocity bound-

ary layer thickness increases. Velocity profile shows that with increasing values

of M the velocity increases. Figure 4.6 is prepared to visualize the impact of the
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magnetic parameter M on the temperature θ(η). It is observed that increasing

the value of M results in the decrease of thermal boundary layer thickness.

Figure 4.7 displays the effect of the magnetic parameter M on concentration pro-

file. The higher values of M decrease the concentration profile. From these figures

the fact that an opposing force is generated by the magnetic field, generally re-

ferred as the Lorentz force, which increase the motion of the fluid resulting in a

decrement in the momentum boundary layer thickness and increment in the ther-

mal and concentration boundary layer thickness.

Figure 4.8 elucidates the effect of the radiation parameter R on the temperature

profile. The dimensionless temperature profile and the thermal boundary layer

thickness increase gradually with an increase in the values of the radiation param-

eter R. Physically, it strengthens the fact that more heat is produced due to the

radiation process for which the temperature profile is increased.

The outcome of Ec on the temperature profile has been characterized through

Figure 4.9 for both Cu-water and Al2O3-water. Physically, the Eckert number de-

picts the relation between the kinetic energy of the fluid particles and the boundary

layer enthalpy. The kinetic energy of the fluid particles rises as Ec assumes the

larger values. Hence, the temperature of the fluid increased and therefore, the

associated thermal boundary layer thickness is enhanced.

Figure 4.10 portrays the influence of chemical reaction parameter γ on the con-

centration profile, while other parameters are fixed for both Cu-water and Al2O3-

water. Concentration falls when chemical reaction parameter γ increases. Fur-

thermore, the larger values of γ result in a decrement in the chemical molecular

diffusion and hence the concentration profile de-escalates and the associated con-

centration boundary layer thickness is reduced. This result is true in the cases of

destructive chemical reaction γ > 0 and generative chemical reactionγ < 0.

Figures 4.11-4.13 are framed to delineate the impact of higher order of chemi-

cal reaction n on the velocity, temperature and concentration profiles. Figure 4.11

clearly reveals that the velocity of Cu-water nanofluid is high than the Al2O3-water

nanofluid. It is evident from the Figure 4.12 that the temperature of Cu-water

nanofluid is less than the Al2O3-water nanofluid. In Figure 4.13 the concentration
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profile increases with higher order chemical reaction parameter. For higher order

reactions, the rate of increase in the concentration is less as compared with lower

order reactions. Here numerical solutions are equipped in the range of 1 ≤ n ≤ 3.

To expose the effect of the permeability parameter P on the dimensionless veloc-

ity, temperature and concentration profiles, Figures 4.14-4.16 are sketched. Figure

4.14 depicts that an increases in the permeability parameter P velocity profile in-

crease effectively. Physically, an increase in the permeability material correspond

to large void section thus increases in the velocity profile. From Figure 4.15, it

is noticed that higher values of the permeability parameter P than decreases the

temperature profile. Actually by the increasing permeability of medium we are

decreasing the viscous effects then low heat is produced which reduces the temper-

ature profile. Figure 4.16 depicts the impact of permeability parameter P on the

concentration profile. By increase in the permeability parameter P , the concen-

tration profile decreases marginally. Moreover, the concentration boundary layer

thickness also shows a declining behaviour.

Figures 4.17-4.19 are sketched to show the impact of inclined magnetic field α on

the velocity, temperature and concentration distributions. Figure 4.17 depicts the

impact of inclination angle α on the velocity. Physically an increase in the incli-

nation angle we are actually increase the Lorentz force which are friction forces

thus correspondingly the decreases velocity profile. Figure 4.18 divulges the tem-

perature distributions for the boosting values of α. Physically by increasing the

inclination angle we are increase the Lorentz force which generate more heat and

thus increase the temperature profile. Figure 4.19 is displayed to analyze the im-

pact of the inclination angle α on concentration profile. From the graph of this

figure it is clear that the concentration profile is intensified for the growing values

of the α.
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Figure 4.2: Impact of φ on the dimensionless velocity f ′
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Figure 4.3: Impact of φ on the dimensionless temperature θ



MHD stagnation point flow of radiative nanofluid... 85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 0.0
 = 0.1
 = 0.2
 = 0.0
 = 0.1
 = 0.2

0.86 0.865 0.87

0.32

0.33

0.34

Solid Lines Cu-Water
Dotted Lines  AI2O3-Water

Sc = 0.68,Pr = 6.2,  = 0.1,
P = Ec = 0.5,R = 1,  = /8,
n = 1
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Figure 4.6: Impact of M on the dimensionless temperature θ
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Figure 4.7: Impact of M on the dimensionless concentration h
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Figure 4.8: Impact of R on the dimensionless temperature θ
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Figure 4.10: Impact of γ on the dimensionless concentration h
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Figure 4.12: Impact of n on the dimensionless temperature θ
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Figure 4.13: Impact of n on the dimensionless concentration h
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Figure 4.14: Impact of P on the dimensionless velocity f ′
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Figure 4.15: Impact of P on the dimensionless temperature θ
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Figure 4.16: Impact of P on the dimensionless concentration h
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Figure 4.17: Impact of α on the dimensionless velocity f ′
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Figure 4.18: Impact of α on the dimensionless temperature θ
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Figure 4.19: Impact of α on the dimensionless concentration h



Chapter 5

Conclusion

In this thesis, we reviewed the work of Mabood et al. [48] and extended with the

effect of Joule heating and inclined magnetic field. First of all, momentum, energy

and concentration equationsoare converted into the ODEs byousing an appropriate

transformation calledosimilarity transformation. By using the shooting technique,

numerical solution has been found for transformed ODEs. Using different values

of governingophysical parametersowe presentedothe results in theoform of tables

and graphs forovelocity, temperatureoand concentration profiles. Concluding allo

arguments and results weosummarized our findingsoas follows:

• The volume fraction of nanoparticles decelerates the velocity for Al2O3–water

nanofluid whereas an opposite trend has been observed for the Cu-water.

• The temperature escalates for both Cu-water and Al2O3–water whereas the

concentration falls for Cu-water and climbs marginally for Al2O3–water for

the larger values of the volume fraction of nanoparticles.

• The magnetic parameter increases the velocity whereas an opposite trend

has been observed for the temperature and concentration profiles for both

types of nanofluid Cu-water and Al2O3–water.

• The heat transfer rate escalates for the radiation paramter for both Cu-water

and Al2O3–water.

93



Conclusion 94

• The Eckert number accelerates the temperature profile for both nanofluid

Cu-water and Al2O3–water.

• The higher values of chemical reaction parameter escalates the concentration

profiles.

• The temperature falls whereas the velocity and concentration escalates for

the larger estimation of the higher order chemical reaction parameter n.

• The higher estimation of the permeability parameter escalates the velocity

profile, but an opposite behaviour has been observed for the temperature

and concentration profiles.

• The inclination angle α decelerates the velocity whereas an opposite trend

has been observed for the temperature and concentration profiles.
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